# **Perpetual Pavements**

#### Dr. David Timm, PE

National Center for Asphalt Technology NCAT

at AUBURN UNIVERSITY

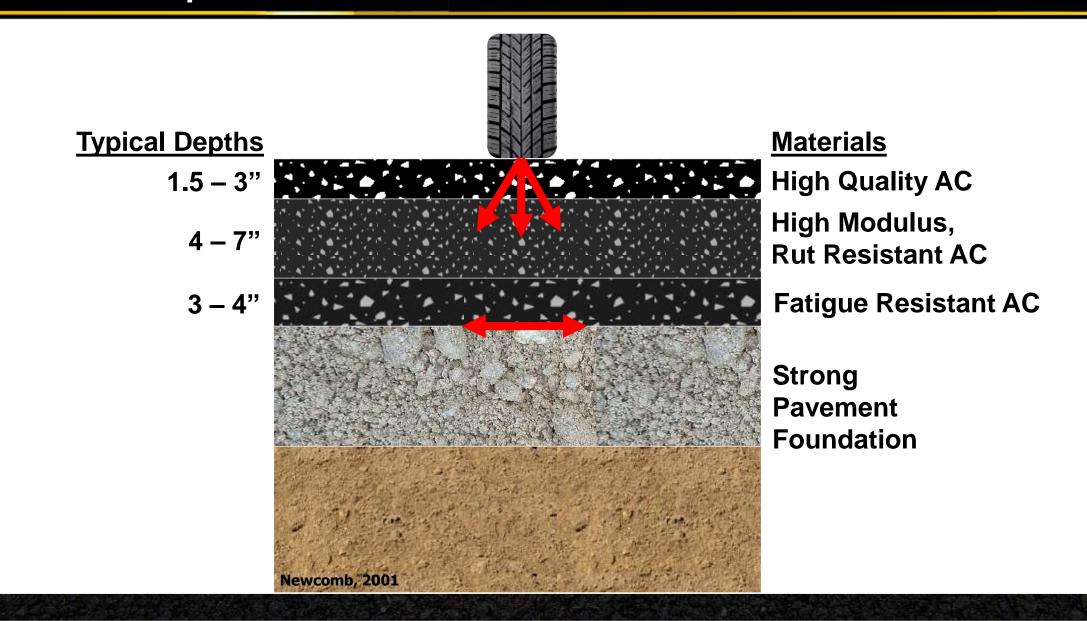
#### What is a Perpetual Pavement?

- 35+ Years of Service
- Minimal structural improvements
- No deep structural distresses
  - Only surface remedies needed

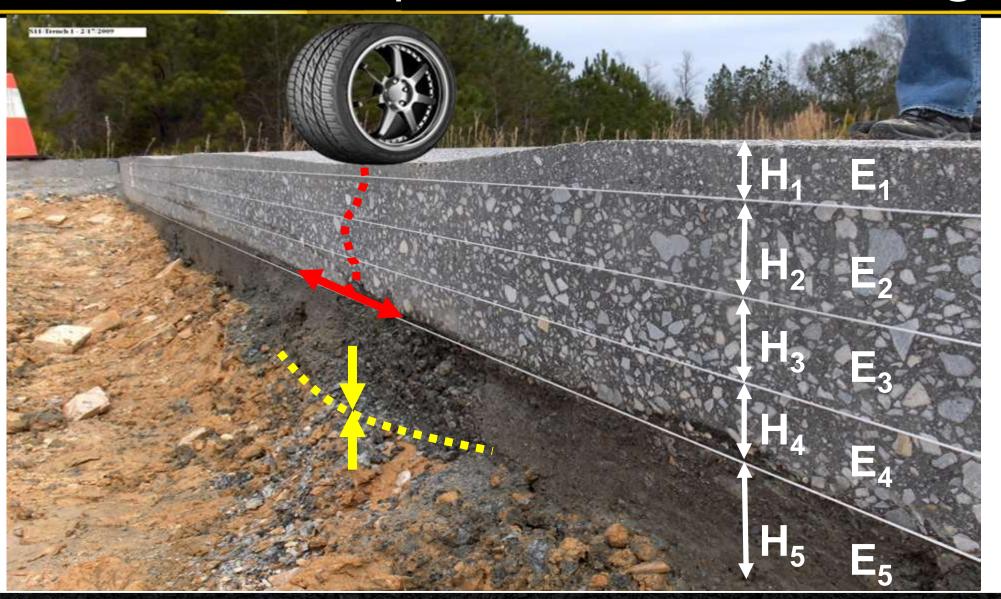
### Perpetual Pavements in the U.S.



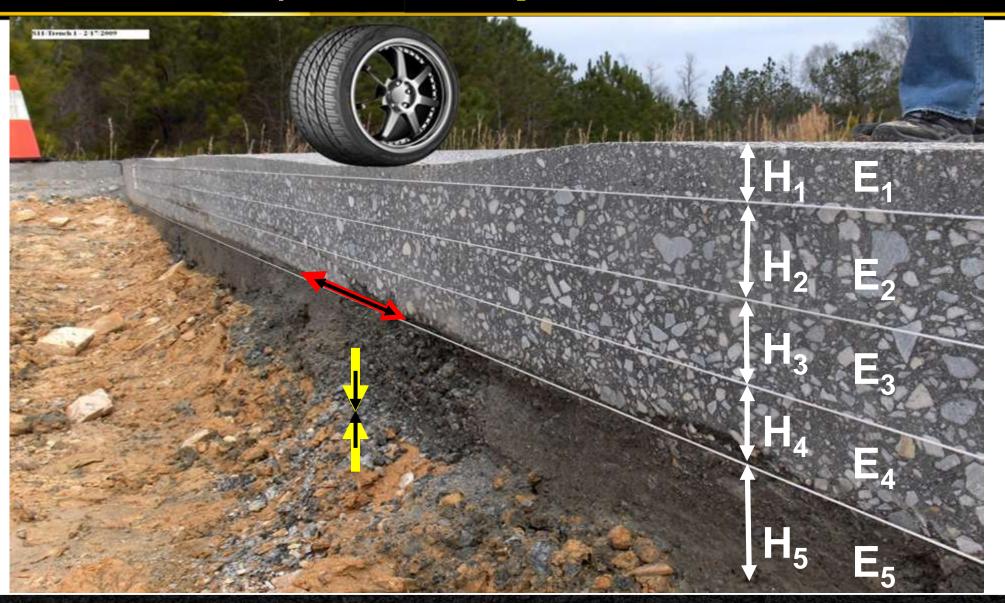
## Goal of Perpetual Pavement Design


Design against deep structural distresses
 Bottom up fatigue cracking
 Structural Rutting

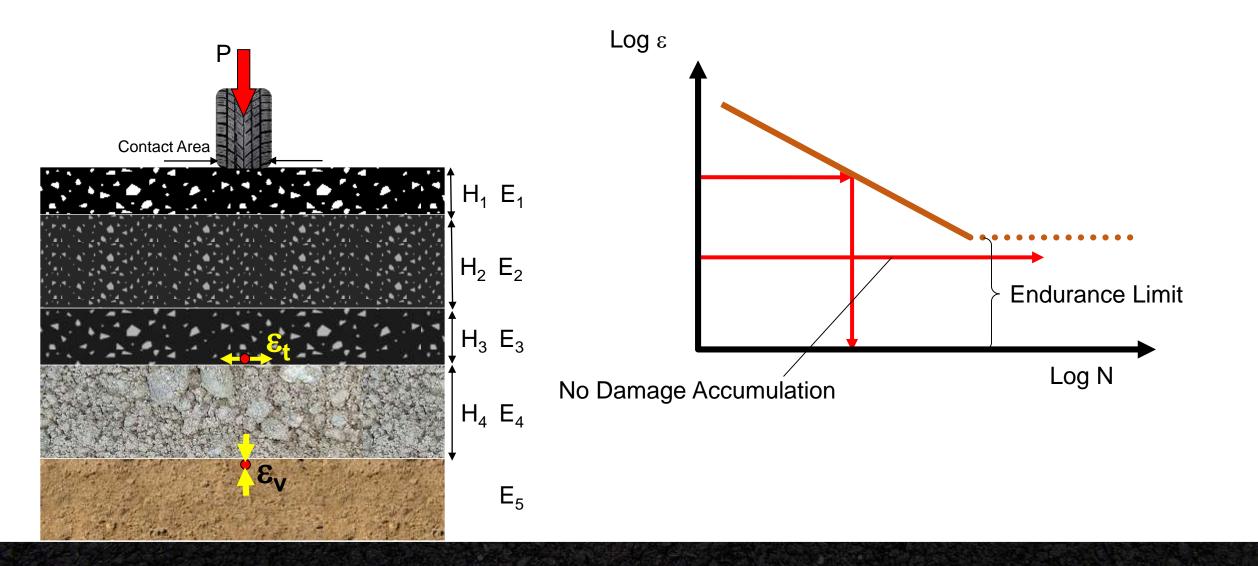




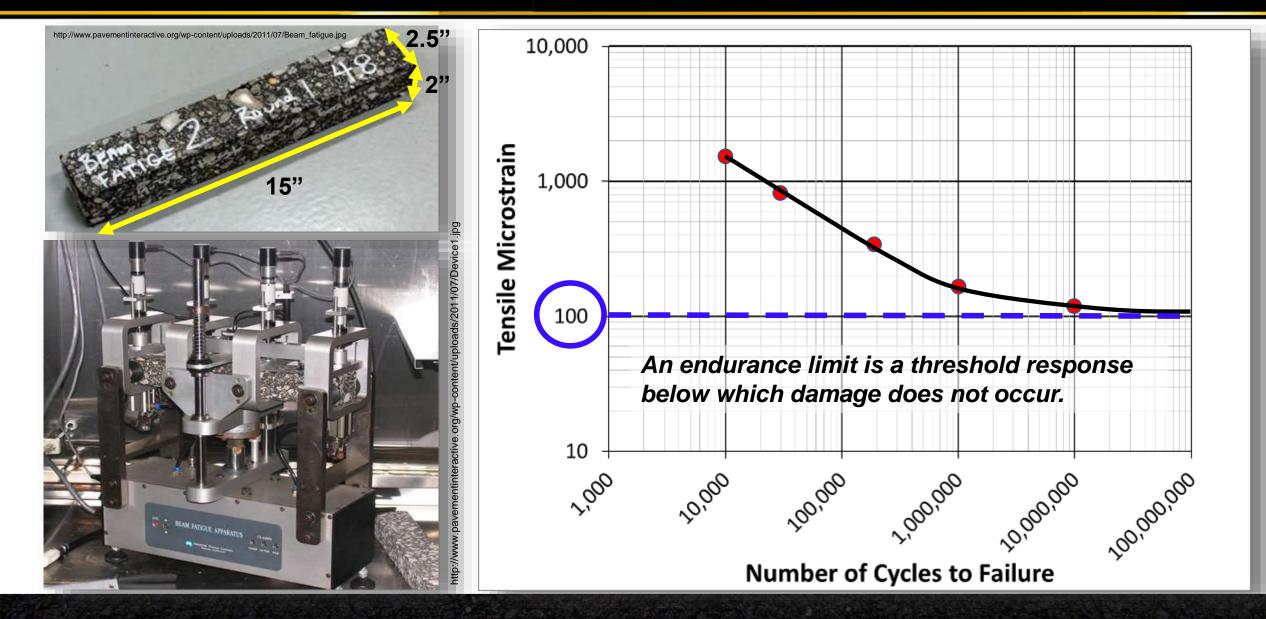

**Results in a structure with Perpetual or Long-Life** 


#### **Perpetual Pavement Cross-Section**




### Mechanistic-Empirical Pavement Design

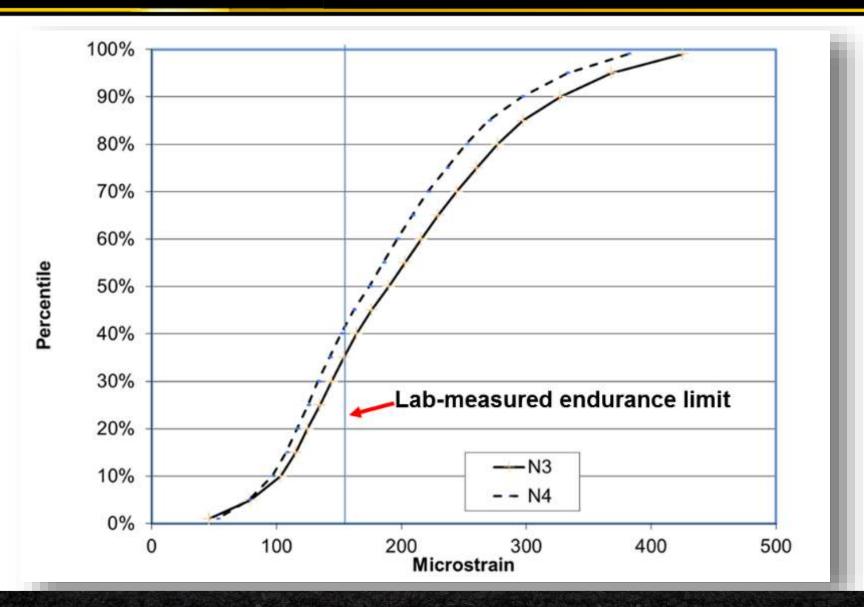



### Mechanistic-Empirical Perpetual Pavement Design

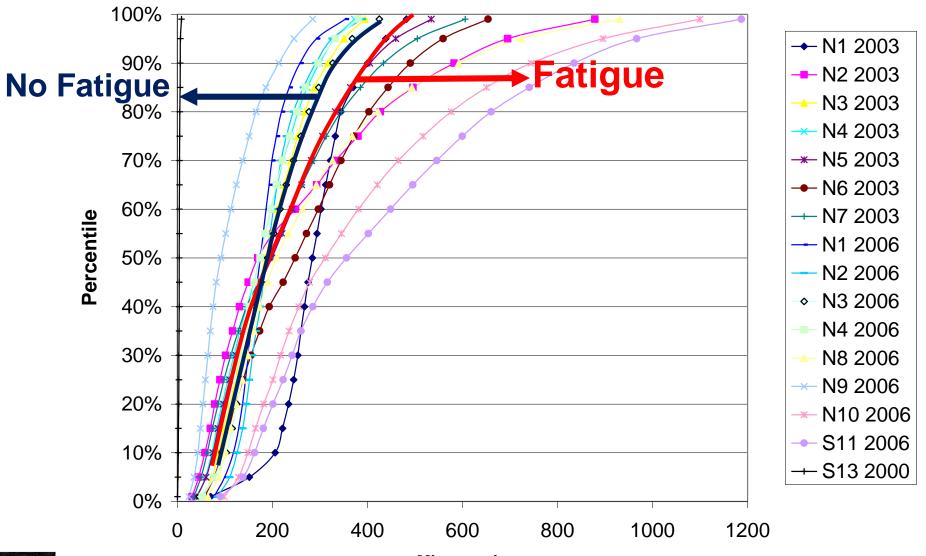


### Mechanistic-Empirical Perpetual Pavement Design



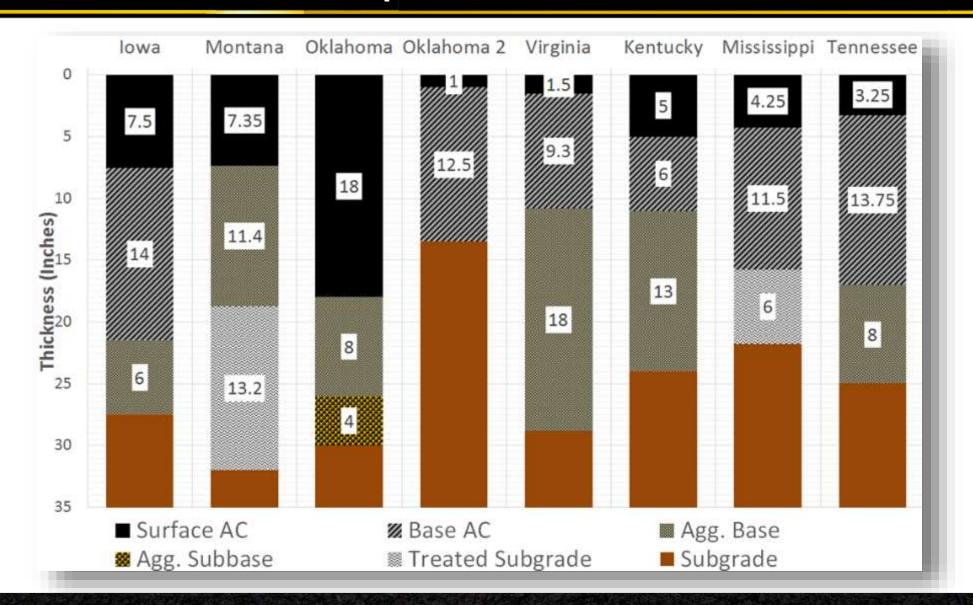

### What is the **Endurance Limit** for AC?




# History of Endurance Limits

- 1972 Monismith estimates about 70  $\mu\epsilon$
- 2001 I-710 designed at 70  $\mu\epsilon$
- 2002 70  $\mu\epsilon$  used by APA
- 2007 NCHRP 9-38 Lab Study
  - + 100  $\mu\epsilon$  for unmodified binders
  - + 250  $\mu\epsilon$  for modified binders
  - Lab conditions more severe than field
- 2007 MEPDG uses 100 to 250  $\mu\epsilon$
- 2008 Measurements at NCAT Test Track show strains in perpetual pavements well exceeding laboratory values

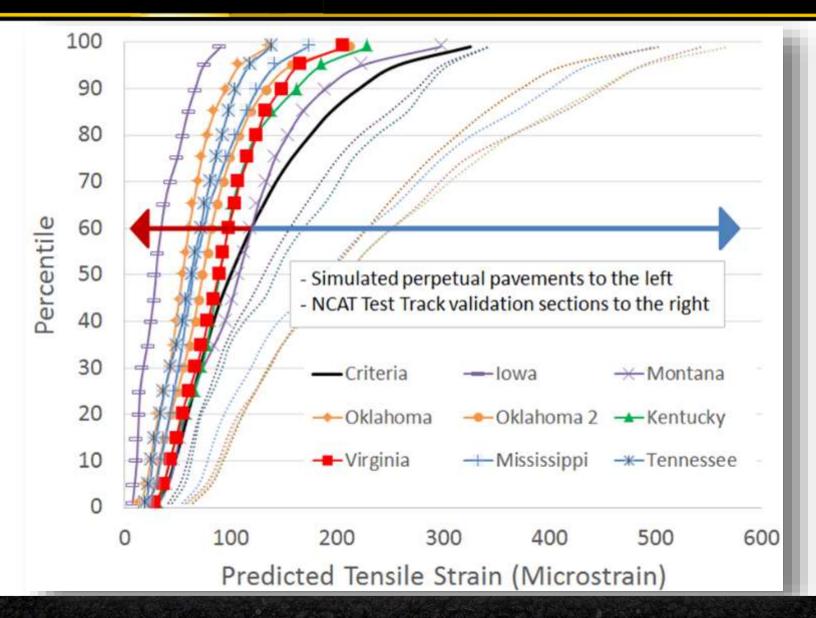
#### Measured Horizontal Strains and Endurance Limits



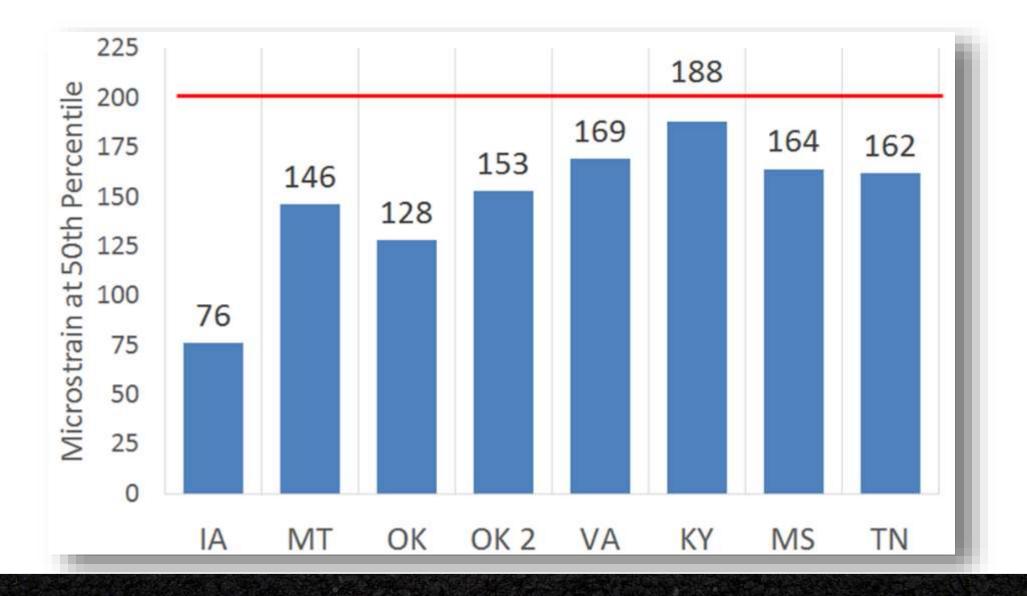

#### Horizontal Strain Distributions at NCAT Test Track



**Microstrain** 


### **Evaluation of Perpetual Pavement Winners**




### Award Winner Metrics

| State       | Project                 | Year<br>Honored | Service Years<br>(Time of award) | Cumulative Traffic<br>(Time of award) |
|-------------|-------------------------|-----------------|----------------------------------|---------------------------------------|
| lowa        | I-80, MP 225.9 to 239.9 | 2002            | 38                               | 32,000,000 ESAL                       |
| Montana     | I-90 MP 439.33 to 445.4 | 2005            | 44                               | 15,000,000 ESAL                       |
| Oklahoma    | I-35, MP 185.6 to 192.6 | 2003            | 40                               | 61,000,000 ESAL                       |
| Oklahoma    | I-40, MP 160.2 to 165.5 | 2002            | 40                               | 60,000,000 ESAL                       |
| Virginia    | I-81, MP 318.4 to 324.9 | 2006            | 41                               | 29,000,000 ESAL                       |
| Kentucky    | I-65, Hart County       | 2009            | 44                               | 76,000,000 ESAL                       |
| Mississippi | I-22, Desoto County     | 2007            | 39                               | 60,000,000 ESAL                       |
| Tennessee   | I-65, MP 22.4 to 32.56  | 2002            | 35                               | 25,800,000 ESAL                       |

#### Horizontal Strain Distribution – Simulation Results



## Award Winners – Vertical Strain Rutting Criteria



### Need & Justification for Distribution-Based Design

- Pavements experience range of loading and environmental conditions
  - Results in wide range of strain responses
- Traditional M-E design uses transfer functions and sums damage vs. time
  - Fatigue transfer functions difficult to develop and may not be accurate
  - Transfer functions not needed with perpetual pavement design
- Designing with a strain distribution will limit fatigue cracking and avoid transfer functions
  - Also arrive at reasonable perpetual (maximum) pavement thicknesses
- Data from NCAT Test Track and validated with Perpetual Pavement Award Winners supports this approach
  - Horizontal tensile strain distribution for fatigue cracking
  - + 200  $\mu\epsilon$  compressive strain at the 50th percentile for rutting

### Perpetual Pavement Design Tools



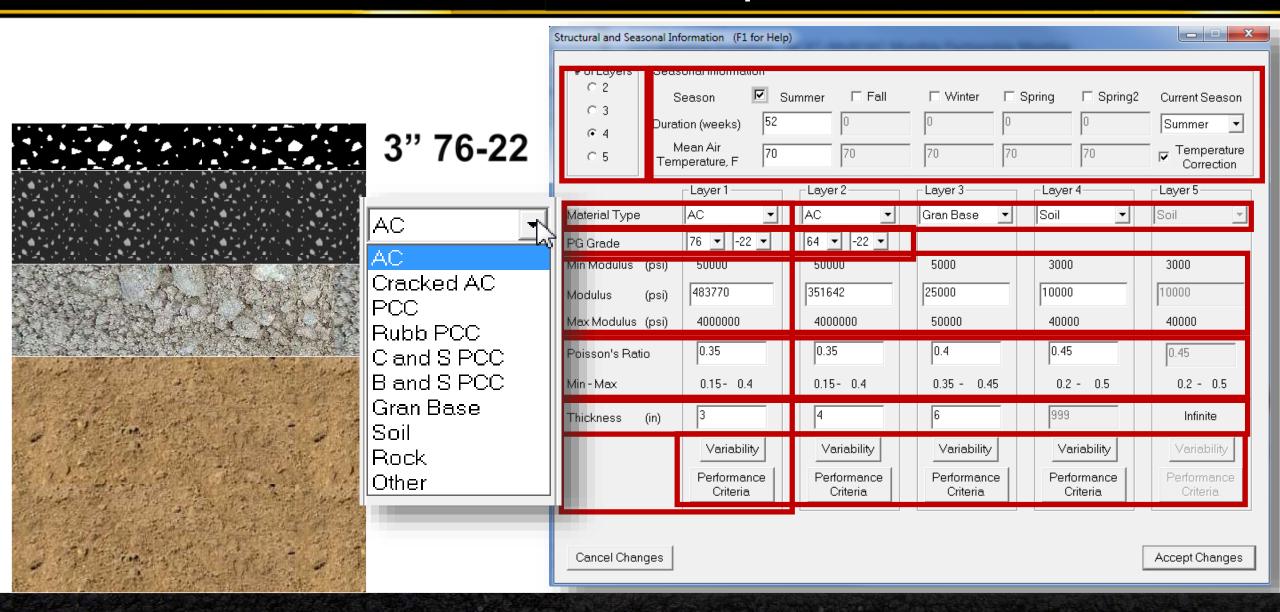
| PerRoadXPress                      |                     |                                                        |
|------------------------------------|---------------------|--------------------------------------------------------|
| Press F1 to access full help file. | Press Shift+F1 to a | access context-senstive pop-up help.                   |
| Functional Classification:         | Urban Collector     | -                                                      |
| Two-Way AADT:                      | 1000                | (500 to 5000)                                          |
| %Trucks:                           | 1                   | (1 to 20)                                              |
| %Growth:                           | 1                   | (0 to 3)                                               |
| Design Trucks:                     | 63482               | (Total Trucks in 30 Years)                             |
| Design ESALs:                      | 18917               | (Total ESALs in 30 Years)                              |
| AASHTO Soil Classification:        | A-1-a ▼             |                                                        |
| Soil Modulus:                      | 29500               | (10,000 to 30,000 psi)                                 |
| Aggregate Base Thickness:          | 4                   | (0 to 10 in.)                                          |
| HMA Modulus:                       | 800000              | (400,000 to 1,000,000 psi)                             |
|                                    | CALCULATE           |                                                        |
| Calculated HMA                     |                     | in.                                                    |
| Design HMA                         |                     | in. Calculated thickness rounded up to nearest 0.25''. |
|                                    | Exit H              | lelp                                                   |

### Key Features of PerRoad 4.4

- Layered elastic analysis
- Up to 5 pavement layers
- User enters design criteria
  - Strain distributions
  - Single strain values and control percentiles
  - Conventional M-E criteria with transfer functions

#### • Many built-in default parameters

- Material properties and variability
- Traffic and load distributions
- Program uses Monte Carlo simulation to simulate uncertainty in design


# Design Example with PerRoad 4.4

- Interstate pavement
- 4 layer structure
  - 76-22 AC
  - 64-22 AC
  - Granular Base
  - Subgrade Soil
- Moderate Climate



http://www.flexiblepavements.org/sites/www.flexiblepavements.org/files/imagecache/awards\_interior/awards/project\_16-\_interstate\_271\_kokosing.jpg

### Structural Inputs



# Input Variability

| put Variability              |                |           |                           |
|------------------------------|----------------|-----------|---------------------------|
| Layer: AC                    |                |           |                           |
| _ Modulus Variability ——     |                |           |                           |
| Distribution Type            | Log-normal 💌   | and and   |                           |
| Coefficient of Variation     | 30 %           | Frequency |                           |
| _<br>⊤Thickness Variability— |                |           | <sup>→</sup> Modulus, psi |
| Distribution Type            | Normal 💌       |           |                           |
| Coefficient of Variation     | 5 %            | Frequency |                           |
|                              |                | E         |                           |
| Cancel Changes               | Accept Changes |           | Thickness, in             |

# Performance Criteria – Fatigue Cracking

| ayer Performance Criteria (Press F1 | for Help)     | C. Street William | the Property of       | Summer Summer   | ×             |
|-------------------------------------|---------------|-------------------|-----------------------|-----------------|---------------|
| Layer: 2                            |               |                   | Note: The transfer fu | nctions are for | strain only.  |
| Position Criteria                   | Threshold     | Target Percentile | Transfer Function     | k1              | k2            |
| Г Тор                               |               |                   |                       |                 |               |
| IT Middle                           |               |                   |                       |                 |               |
| IT Bottom                           |               |                   |                       |                 |               |
|                                     |               |                   |                       |                 |               |
| Note: The following sign conve      | ation is used |                   |                       |                 |               |
| Negative = Tension                  |               |                   |                       |                 |               |
| Positive = Compression              |               |                   |                       |                 |               |
| Deflection is Positive Downwar      | d             |                   |                       |                 |               |
|                                     |               |                   |                       | 41              |               |
| Cancel Changes                      |               |                   |                       | A               | ccept Changes |
|                                     |               |                   |                       |                 |               |

# Performance Criteria – Fatigue Cracking

| Layer Performance Criteria (Press F1 for Help)                                                                                                                                                                                                                                                                                                                          | P. Long. M. Str. | Street, Miles     | a range or               | and later.         | ×         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|--------------------------|--------------------|-----------|
| Layer: 2                                                                                                                                                                                                                                                                                                                                                                |                  |                   | Note: The transfer funct | ions are for strai | n only.   |
| Position Criteria                                                                                                                                                                                                                                                                                                                                                       | Threshold        | Target Percentile | Transfer Function        | k1                 | k2        |
| Г Тор                                                                                                                                                                                                                                                                                                                                                                   |                  |                   |                          |                    |           |
| ☐ Middle                                                                                                                                                                                                                                                                                                                                                                |                  |                   |                          |                    |           |
| <ul> <li>✓ Bottom</li> <li>✓ Horizontal Stress<br/>Vertical Stress</li> <li>Vertical Stress</li> <li>Principal Stress</li> <li>Horizontal Strain</li> <li>Vertical Strain</li> <li>Principal Strain</li> <li>Negative = Vertical Deflection</li> <li>Horizontal Strain Distribution</li> <li>Positive = Compression</li> <li>Deflection is Positive Downward</li> </ul> | 0                | 50                |                          |                    |           |
| Cancel Changes                                                                                                                                                                                                                                                                                                                                                          |                  |                   |                          | Accep              | t Changes |

# Performance Criteria – Fatigue Cracking

| Layer Performance Criteria (Press F1 for Help)            | P. Const. J. Mar.         | From High         | and the second second  | Summer Summer     | ×           |
|-----------------------------------------------------------|---------------------------|-------------------|------------------------|-------------------|-------------|
| Layer: 2                                                  |                           |                   | Note: The transfer fur | nctions are for s | train only. |
| Position Criteria                                         | Threshold                 | Target Percentile | Transfer Function      | k1                | k2          |
| Г Тор                                                     |                           |                   |                        |                   |             |
| □ Middle                                                  |                           |                   |                        |                   |             |
| I ■ Bottom Horizontal Strain Distribution                 | Percentile Microstrain    |                   |                        |                   |             |
|                                                           | 95th -257                 |                   |                        |                   |             |
|                                                           | 85th -194                 |                   |                        |                   |             |
| Note: The following sign convetion is used                | 75th -158                 |                   |                        |                   |             |
| Negative = Tension                                        | 65th -131                 |                   |                        |                   |             |
| Positive = Compression<br>Deflection is Positive Downward | 55th -110                 |                   |                        |                   |             |
|                                                           | Load Default Distribution |                   |                        |                   |             |
| Cancel Changes                                            | Enter Endurance Limit     |                   |                        | Acc               | ept Changes |

### Performance Criteria – Rutting

| ayer Performance Criteria (Press F1 for Help)             | R. Same   | 7.58        | Come The          | ng 7 Spring           | Summer Summer   | ×            |
|-----------------------------------------------------------|-----------|-------------|-------------------|-----------------------|-----------------|--------------|
| Layer: 4                                                  |           |             |                   | Note: The transfer fu | nctions are for | strain only  |
| Position Criteria                                         | Threshold |             | Target Percentile | Transfer Function     | k1              | k2           |
|                                                           |           |             |                   |                       |                 |              |
| ✓ Top Vertical Strain                                     | 200       | microstrain | 50                | Γ                     |                 |              |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
| Note: The following sign convetion is used                |           |             |                   |                       |                 |              |
| Negative = Tension                                        |           |             |                   |                       |                 |              |
| Positive = Compression<br>Deflection is Positive Downward |           |             |                   |                       |                 |              |
| Deflection is Positive Downward                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |
| Cancel Changes                                            |           |             |                   |                       | Ac              | cept Changes |
|                                                           |           |             |                   |                       |                 |              |
|                                                           |           |             |                   |                       |                 |              |

# Traffic Inputs

| oading Conditions                     | (F1 for Help)   |                               |                     |                   | •       | 1.00                          |         |                   |                                   |
|---------------------------------------|-----------------|-------------------------------|---------------------|-------------------|---------|-------------------------------|---------|-------------------|-----------------------------------|
| General Traffi<br>Two-W<br>Axles Grou | 'ay AADT 👖      | 1000                          | % Tri<br>% Truck Gr | ucks 10<br>owth 4 | _       | cks in Desig<br>actional Dist |         |                   | ut Load Spectra<br>y Vehicle Type |
|                                       | · · · /         |                               |                     |                   |         | scuonai Dist                  |         |                   |                                   |
| Loading Confi                         |                 | eck All That.                 |                     |                   |         |                               |         | Cur               | rrent Configuration               |
| 00-00 50                              | Single<br>.43 % | <mark>00<del>-</del>00</mark> | ▼ Tandem<br>48.81 % | <mark>10=</mark>  | 0.76    | "m<br>"%                      | 0       | - 195             | ingle 🔻                           |
| Current Axle L                        | .oad Distributi | ion                           |                     |                   |         |                               |         |                   |                                   |
| Axle<br>Wt<br>kip                     | % Axles         | Axle<br>Wt<br>kip             | % Axles             | Axle<br>Wt<br>kip | % Axles | Axle<br>Wt<br>kip             | % Axles | Axle<br>Wt<br>kip | % Axles                           |
|                                       | 0               |                               | 0.35                | 48-50             | 0       | 72-74                         | 0       | 96-98             | 0                                 |
| 2-4                                   | 4.46            | 26-28                         | 0.2                 | 50-52             | 0       | 74-76                         | 0       | 98-100            | 0                                 |
| 4-6                                   | 9.13            | 28-30                         | 0.1                 | 52-54             | 0       | 76-78                         | 0       | 100-102           | 0                                 |
| 6-8                                   | 11.32           | 30-32                         | 0.05                | 54-56             | 0       | 78-80                         | 0       | 102-104           | 0                                 |
| 8-10                                  | 19.55           | 32-34                         | 0.04                | 56-58             | 0       | 80-82                         | 0       | 104-106           | 0                                 |
| 10-12                                 | 25.5            | 34-36                         | 0.02                | 58-60             | 0       | 82-84                         | 0       | 106-108           | 0                                 |
| 12-14                                 | 14.57           | 36-38                         | 0.01                | 60-62             | 0       | 84-86                         | 0       | 108-110           | 0                                 |
| 14-16                                 | 6.42            | 38-40                         | 0.01                | 62-64             | 0       | 86-88                         | 0       | 110+              | 0                                 |
| 16-18                                 | 3.84            | 40-42                         | 0                   | 64-66             | 0       | 88-90                         | 0       | _                 | 100                               |
| 18-20                                 | 2.39            | 42-44                         | 0                   | 66-68             | 0       | 90-92                         | 0       | Total             | 100                               |
| 20-22                                 | 1.37            | 44-46                         | 0                   | 68-70             | 0       | 92-94                         | 0       |                   |                                   |
| 22-24                                 | 0.68            | 46-48                         | 0                   | 70-72             | 0       | 94-96                         | 0       |                   |                                   |
| Cancel Chang                          | les             |                               | Import              | :Load Spe         | ctra S  | ave Load Sp                   | pectra  |                   | Accept Changes                    |

# Vehicle Type Distribution

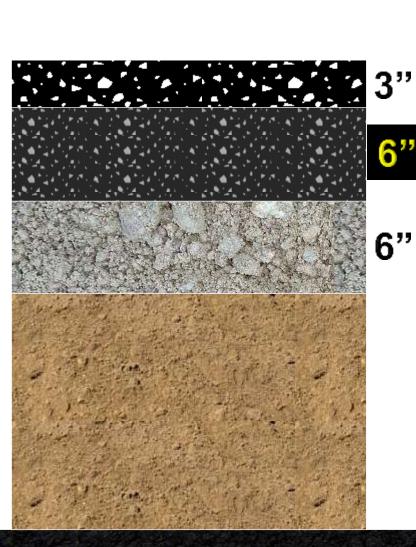
| /ehicle Type Distribution (Press F1 for | Help)           | _                  |                                                                                                                  |                    | X              |
|-----------------------------------------|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| F                                       | Roadway Functio | nal Classification | Rural Interstate                                                                                                 |                    | -2             |
|                                         | Vehicle         |                    | and the second | Number of Axles Pe | er Vehicle     |
|                                         | Classification  | % AADTT            | Single                                                                                                           | Tandem             | Tridem         |
|                                         | 4               | 1.2                | 1.62                                                                                                             | 0.39               | 0              |
| ą                                       | 5               | 9.4                | 2                                                                                                                | 0                  | 0              |
| <b>商</b>                                | 6               | 3.3                | 1.02                                                                                                             | 0.99               | 0              |
| - ee                                    | 7               | 0.5                | 1                                                                                                                | 0.26               | 0.83           |
|                                         | 8               | 7.4                | 2.38                                                                                                             | 0.67               | 0              |
| 32                                      | 9               | 68.9               | 1.13                                                                                                             | 1.93               | 0              |
|                                         | 1.1.1           | 1.2                | 1.19                                                                                                             | 1.09               | 0.89           |
|                                         | <b>1</b> 1      | 6.1                | 4.29                                                                                                             | 0.26               | 0.06           |
|                                         | 12              | 0.8                | 3.52                                                                                                             | 1.14               | 0.06           |
|                                         | 13              | 1.2                | 2.15                                                                                                             | 2.13               | 0.35           |
|                                         | Total           | 100                |                                                                                                                  |                    |                |
| Cancel Changes                          |                 |                    |                                                                                                                  |                    | Accept Changes |

### Axle Types & Load Spectra

| oading Conditions                     | (F1 for Help)                    |                          |                          |                   | ۰.      | 1.1                           |                        | · · · ·           |                                    |
|---------------------------------------|----------------------------------|--------------------------|--------------------------|-------------------|---------|-------------------------------|------------------------|-------------------|------------------------------------|
| – General Traff<br>Two-W<br>Axles Gro | /ay AADT                         | 1000<br>136              | % Tru<br>% Truck Gro     | icks 10<br>owth 4 | _       | cks in Desig<br>ectional Dist |                        | % Inp<br>% b      | out Load Spectra<br>y Vehicle Type |
|                                       | igurations (C<br>Single<br>.43 % | heck All That            | Apply)<br>Tandem 48.81 % | <b>())</b> =      | Tride   | ۳m<br>%                       | <mark>0—0</mark>  □ st | eer 📕 💻           | rrent Configuration<br>ingle       |
| Axle<br>Wt<br>kip                     | % Axles                          | ien<br>Axle<br>Wt<br>kip | % Axles                  | Axle<br>Wt<br>kip | % Axles | Axle<br>Wt<br>kip             | % Axles                | Axle<br>Wt<br>kip | % Axles                            |
| · · · ·                               | 0                                | 24-26                    | 0.35                     | 48-50             | 0       | 72-74                         | 0                      | 96-98             | 0                                  |
| 2-4                                   | 4.46                             | 26-28                    | 0.2                      | 50-52             | 0       | 74-76                         | 0                      | 98-100            | 0                                  |
| 4-6                                   | 9.13                             | 28-30                    | 0.1                      | 52-54             | 0       | 76-78                         | 0                      | 100-102           | 0                                  |
| 6-8                                   | 11.32                            | 30-32                    | 0.05                     | 54-56             | 0       | 78-80                         | 0                      | 102-104           | 0                                  |
| 8-10                                  | 19.55                            | 32-34                    | 0.04                     | 56-58             | 0       | 80-82                         | 0                      | 104-106           | 0                                  |
| 10-12                                 | 25.5                             | 34-36                    | 0.02                     | 58-60             | 0       | 82-84                         | 0                      | 106-108           | 0                                  |
| 12-14                                 | 14.57                            | 36-38                    | 0.01                     | 60-62             | 0       | 84-86                         | 0                      | 108-110           | 0                                  |
| 14-16                                 | 6.42                             | 38-40                    | 0.01                     | 62-64             | 0       | 86-88                         | 0                      | 110+              | 0                                  |
| 16-18                                 | 3.84                             | 40-42                    | 0                        | 64-66             | 0       | 88-90                         | 0                      |                   |                                    |
| 18-20                                 | 2.39                             | 42-44                    | 0                        | 66-68             | 0       | 90-92                         | 0                      | Total             | 100                                |
| 20-22                                 | 1.37                             | 44-46                    | 0                        | 68-70             | 0       | 92-94                         | 0                      |                   |                                    |
| 22-24                                 | 0.68                             | 46-48                    | 0                        | 70-72             | 0       | 94-96                         | 0                      |                   |                                    |
| Cancel Chang                          | jes                              |                          | Import                   | Load Spe          | ctra S  | ave Load S                    | pectra                 |                   | Accept Changes                     |

# PerRoad Thickness Design Module

|                                                          | - Thickness      | Pavement Layers: 4<br>Layer 1<br>AC | Layer 2<br>AC<br>4<br>6                 | Layer 4<br>Soil | Layer 5<br>Soil<br>Infinite | Reliability Analysis<br>Set Monte Carlo Cycles<br>Perform Analysis |    |
|----------------------------------------------------------|------------------|-------------------------------------|-----------------------------------------|-----------------|-----------------------------|--------------------------------------------------------------------|----|
| 🙎 Save As                                                | Perpetual F      | Pavement Design Results             | : Conventional Design with Transf       | er Functions —  |                             | Monte Carlo Cycles                                                 |    |
| Save in: Desktop<br>Name<br>Calibraries<br>David Timm    | <b>▼</b><br>Size | 🗢 🛍 📸 📰 ▾<br>Item type              | Date modified                           |                 | Ē                           | Number of Monte Carlo Cycles                                       |    |
| Computer  Network  Adobe CS6 Design Standard  AFD60 2017 |                  | File folder<br>File folder          | 8/27/2014 4:32 PM<br>1/10/2017 11:08 AM |                 | -                           | Cancel                                                             | ОК |
| File name: Trial 1 kls                                   | 6                |                                     |                                         |                 | Save                        |                                                                    |    |
| Save as type: PerRoad Raw Data (*xls                     | Disclaime        | er                                  | Cost Analys                             | is Export       | Formatted Data to EXCE      | Leave Module                                                       |    |


### Simulation Results

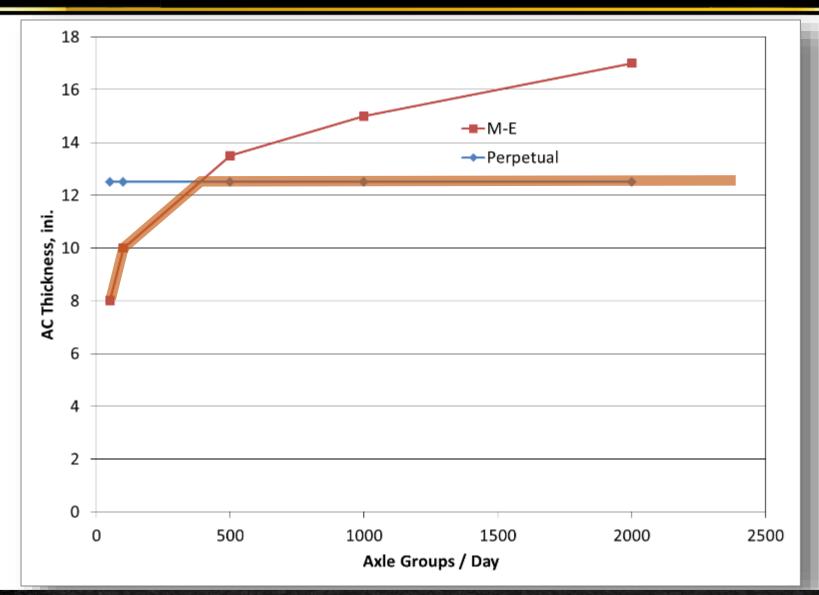
| Layer | Location | Criteria        | Units | Target Value | Target Percentile | Actual Percentile | Pass/Fail? |
|-------|----------|-----------------|-------|--------------|-------------------|-------------------|------------|
| 2     | Bottom   | Tensile Strain  | micr  | -257.        | 95                | 96.2              | Pass       |
|       |          |                 |       | -194.        | 85                | 85.4              | Pass       |
|       |          |                 |       | -158.        | 75                | 68.               | Fail       |
|       |          |                 |       | -131.        | 65                | 53.4              | Fail       |
|       |          |                 |       | -110         | 55                | 41                | Fail       |
| 4     | Тор      | Vertical Strain | micr  | 200.         | 50.               | 31.6              | Fail       |

#### • Pavement is NOT perpetual

- Failing in both bottom-up fatigue and rutting
- Change design thicknesses and analyze again

# 2<sup>nd</sup> Design Iteration

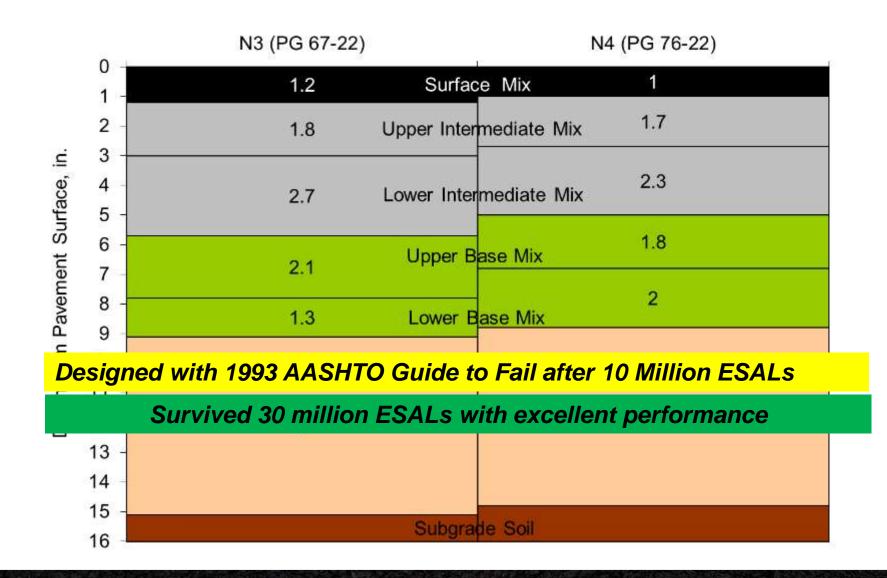



| t & Desi         | gn Module (F  | 1 for Help)                       |                    |                                                   |                          |       |                                   |        |                             |                                            |          |                                              |      |             |
|------------------|---------------|-----------------------------------|--------------------|---------------------------------------------------|--------------------------|-------|-----------------------------------|--------|-----------------------------|--------------------------------------------|----------|----------------------------------------------|------|-------------|
|                  | P             | ayer1<br>AC                       | Layer 2<br>AC<br>6 |                                                   | Layer 3<br>Gran Bas<br>6 | e     | Layer 4<br>Soil<br>999            |        | _ayer 5<br>Soil<br>Infinite | Reliabi                                    | lity An  | alysis<br>Set Monte Carlo<br>Perform Anal    | -    |             |
| erpetua<br>Layer |               | Design Results: (<br>  Criteria   | Conventio          |                                                   |                          |       | nctions<br>Below Critical         |        | Damage/Mill                 | ion Axle                                   | <u> </u> | ′ears to D=0.1                               | Year | s to D=1.0  |
| rpetua           | I Pa∨ement    | Design Results: F                 | Percentile         | Respon                                            | ses                      |       | III                               |        |                             |                                            |          |                                              |      | 4           |
| .ayer            | Location      | Criteria                          | Units              | Target                                            | Value                    |       | Target Pe                         | rcenti |                             | Actual Perce                               | entil    | Pass/Fail?                                   |      |             |
| 1                | Bottom<br>Top | Tensile Strain<br>Vertical Strain | micr               | -257.<br>-194.<br>-158.<br>-131.<br>-110.<br>200. |                          |       | 95<br>85<br>75<br>65<br>55<br>50. |        |                             | 39.6<br>36.<br>31.6<br>32.<br>59.8<br>55.2 |          | Pass<br>Pass<br>Pass<br>Pass<br>Pass<br>Pass |      |             |
| )isclain         | ner           |                                   |                    |                                                   | Cost Ana                 | lysis | Export For                        | matte  | ed Data to EXC              | EL                                         |          |                                              | l    | .eave Modul |

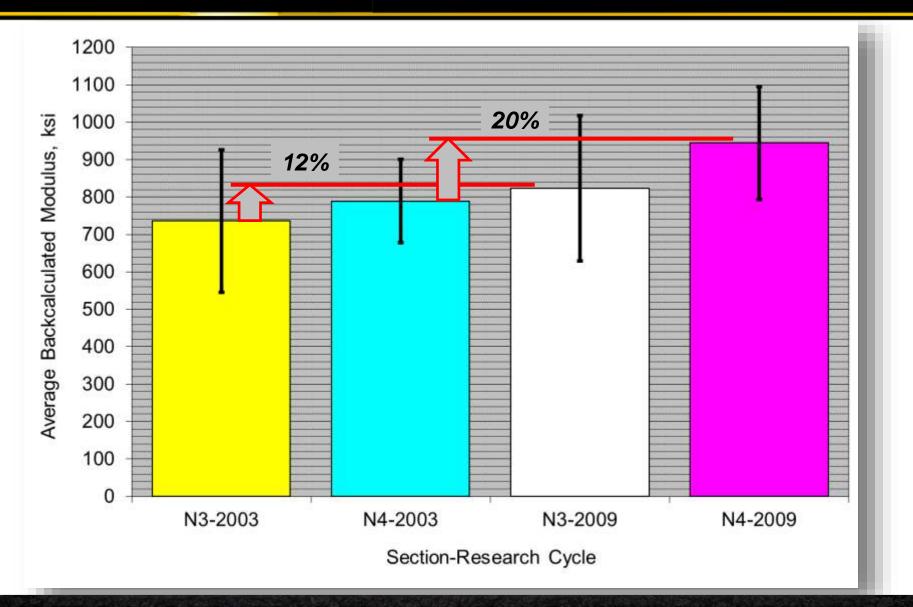
# Additional Design Examples

| Subgrade | Base     | Ca          | Range of   |            |         |                   |  |
|----------|----------|-------------|------------|------------|---------|-------------------|--|
| Mr (ksi) | Mr (ksi) | Minneapolis | Phoenix    | Baltimore  | Average | Maximum           |  |
|          | 3        | (PG 64-34)  | (PG 70-22) | (PG 64-22) | •       | Thicknesses (in.) |  |
| 5        | 30       | 12.5        | 15.5       | 14         | 14.0    | 12.5-15.5         |  |
| 5        | 50       | 12          | 15         | 14         | 13.7    | 12-15             |  |
| 5        | 100      | 12          | 14         | 13.5       | 13.2    | 12-14             |  |
| 10       | 30       | 10.5        | 14         | 12         | 12.2    | 10.5-14           |  |
| 10       | 50       | 10.5        | 13         | 12         | 11.8    | 10.5-13           |  |
| 10       | 100      | 10          | 12         | 11         | 11.0    | 10-12             |  |
| 20       | 30       | 9           | 12.5       | 10         | 10.5    | 9-12.5            |  |
| 20       | 50       | 8.5         | 12.5       | 9.5        | 10.2    | 8.5-12.5          |  |
| 20       | 100      | 8           | 12         | 9          | 9.7     | 8-12              |  |

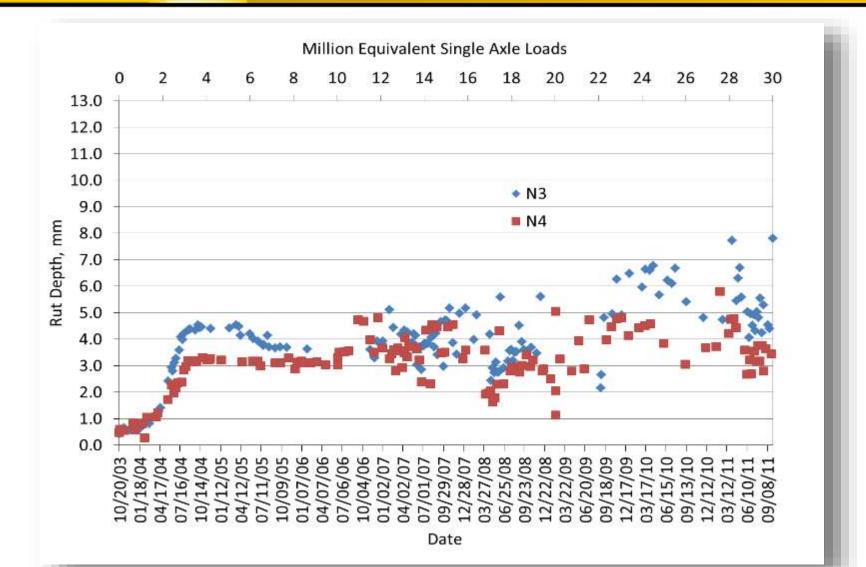
## Design Comparison – Perpetual vs M-E


- Minneapolis
- 6" Aggregate Base
  - 30 ksi
- 5 ksi soil
- M-E 35 year analysis

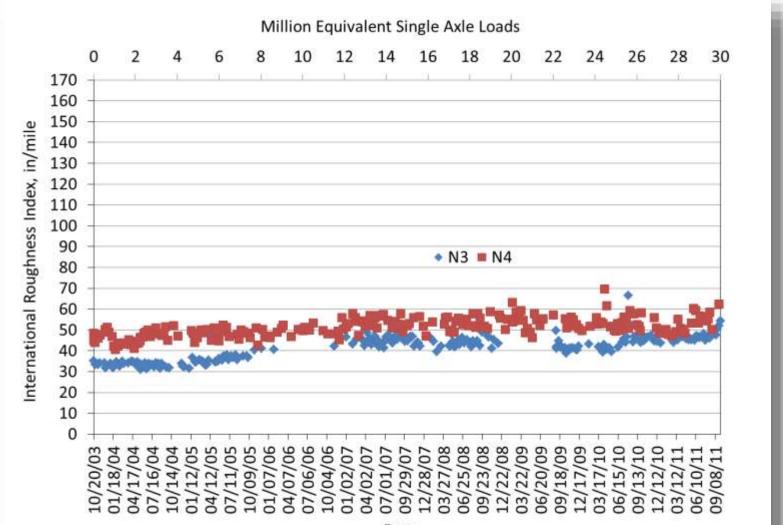



### NCAT Test Track – Perpetual Experiments



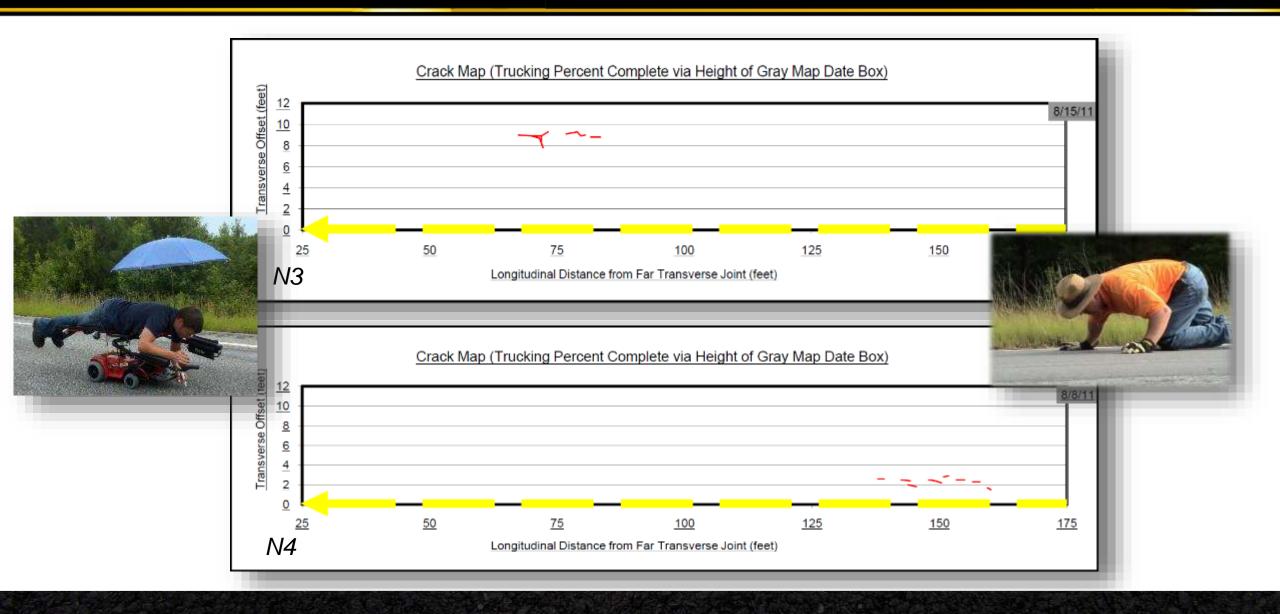

### Test Sections – Experiment 1




#### In-Place Modulus vs Time



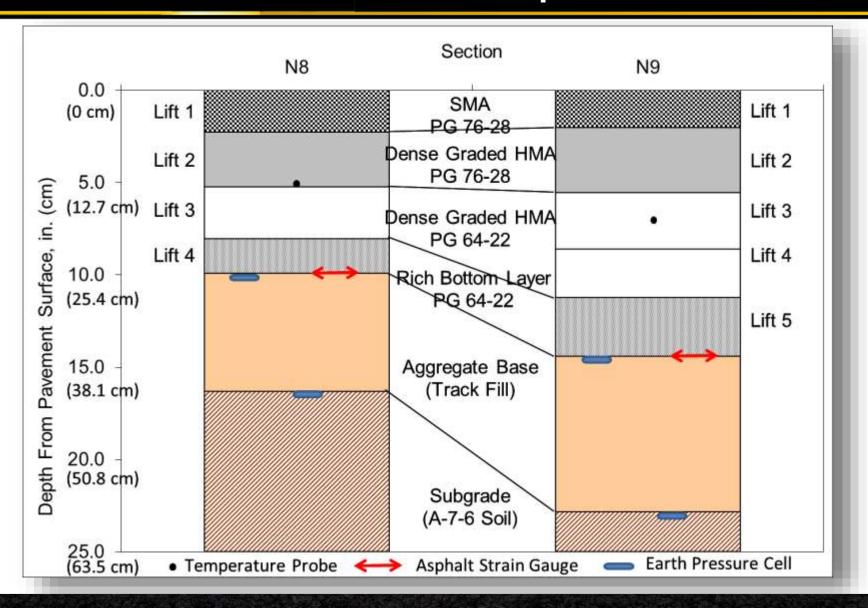
### **Rutting Performance**



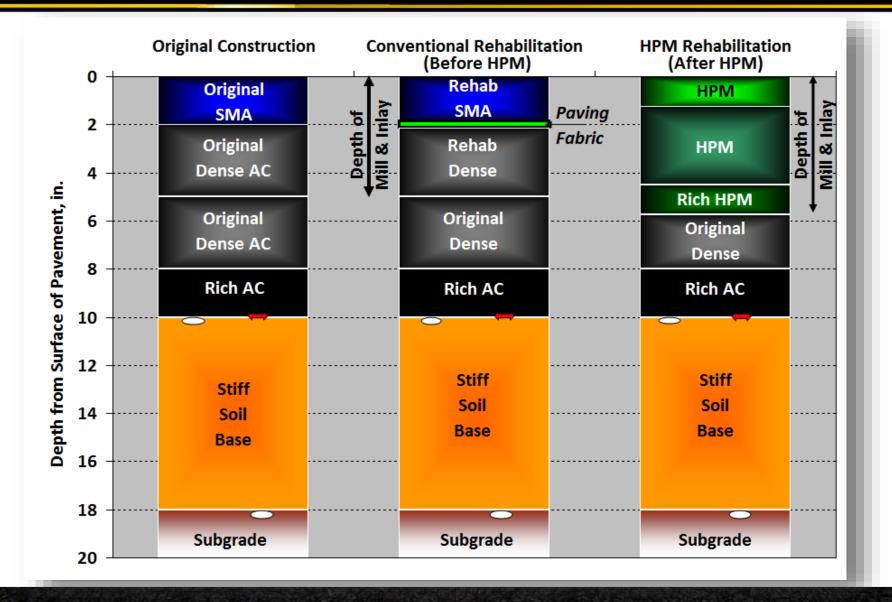

### Ride Quality



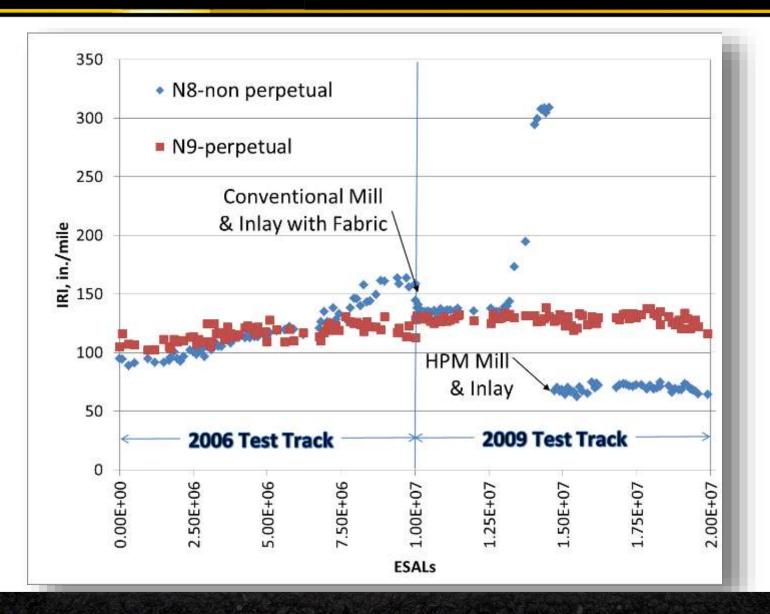

Date


# Cracking Performance

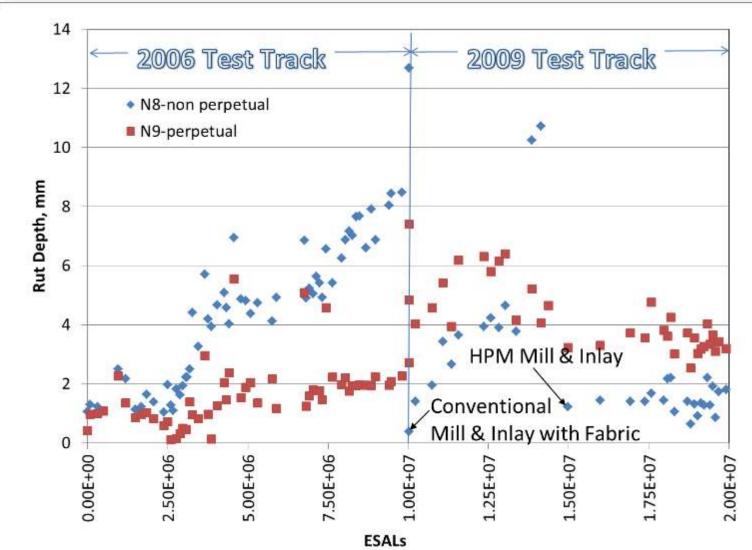



# Forensic Trenching




### Test Sections – Experiment 2



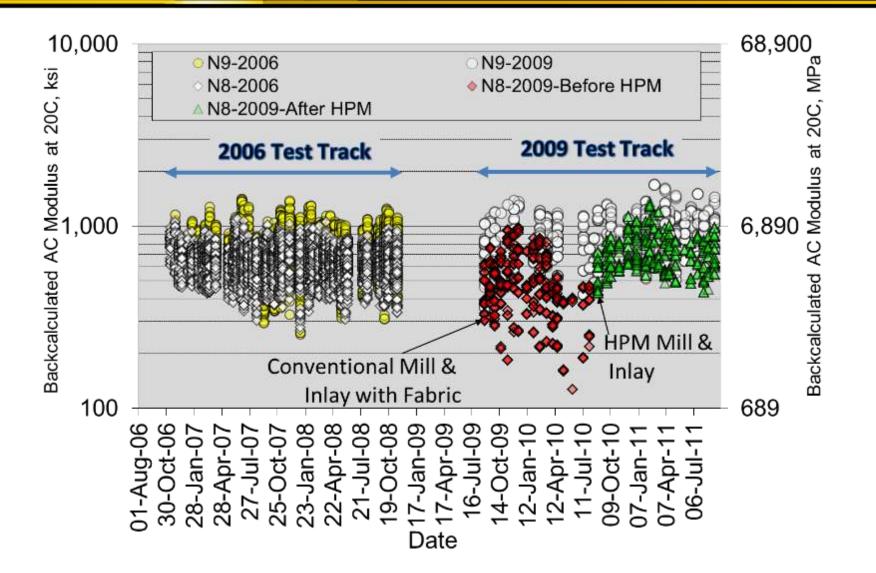

### N8 Rehabilitation



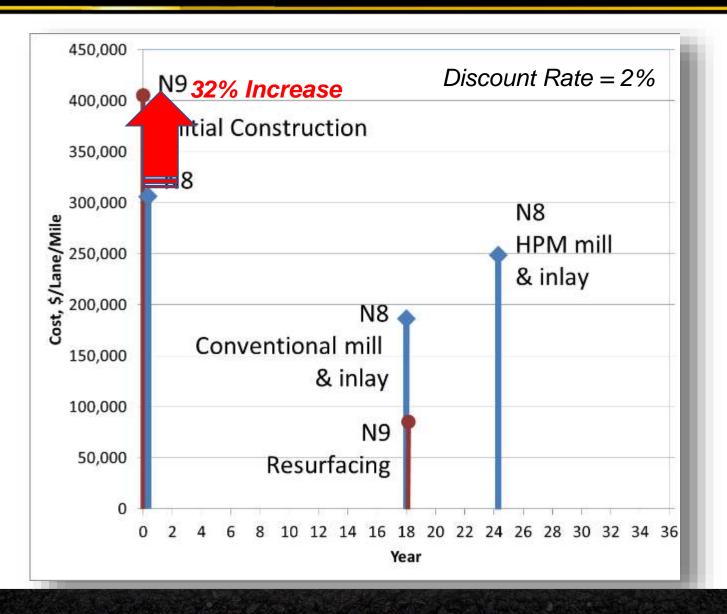
### Section Performance - IRI



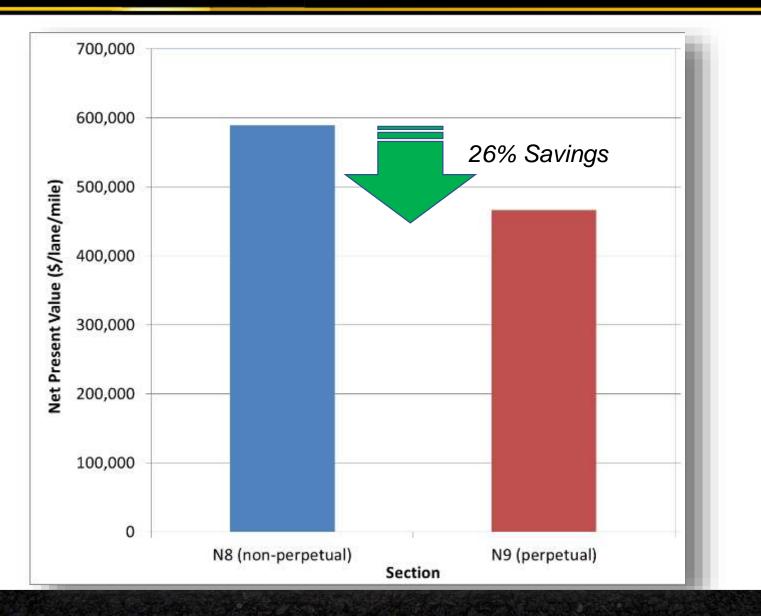
#### Section Performance - Rutting




JALS


## N8 After 1<sup>st</sup> Rehabilitation @ 3.5 MESAL




### AC Modulus vs Date



#### Life Cycle Cost Analysis – Cash Flow Diagram



#### Life Cycle Cost Analysis – Net Present Value



# Summary & Conclusions

- Perpetual pavements widely recognized across the U.S.
- Perpetual pavements don't have deep structural problems
  - Surface remedies make them an attractive option
- Perpetual pavements can be designed using mechanistic principles
  - Strain distributions developed at NCAT Test Track and validated with award winners
- PerRoad incorporates strain distribution design & Monte Carlo simulation to produce reasonable perpetual pavement cross-sections
  - Can be used to find maximum thicknesses
- Case studies from Test Track highlight key features of perpetual pavement
  - Tend to gain modulus over time
  - Exhibit excellent performance
    - Stable ride quality
    - Minimal rutting
    - No deep structural distresses
  - Cost effective

# Thank you!

