

Leveraging Artificial Intelligence (AI) to Improve Current Asphalt Mixture Design, Pavement Monitoring, and Maintenance Decisions

WAPA's 66th Annual Conference 12/02/2025

Smart Highway Research Center (SHRC)

SHRC Current Research Focus

- Use of Al / Sensing / Automation Technology in Pavement Engineering
 - Development of Integrated Road Project Information System (IRIS)
 - Low-cost Pavement Condition Evaluation
 - Automated Pavement Maintenance
 - Automated Quality Management
 - Al Training of Workforce
- Durable and Sustainable Pavement Solutions
 - Low-energy / Low-temperature / Low-Cost Mix Design
 - High RAP Mixes and Specialty Rejuvenators
 - Development of the CPR-Index for BMD

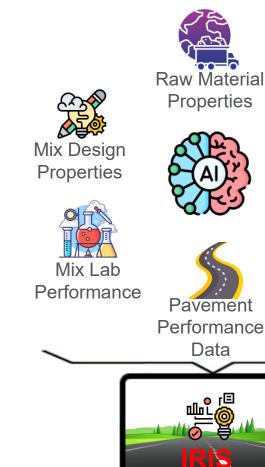
Development of Integrated Road Project Information System (IRIS)

IRIS - Integrated Road Project Information System (IRIS)

Current Practice:

 Materials, mix designs, construction and performance data are not integrated or used intelligently

> Challenges:


- Pavement delivery and management data is siloed and underutilized
- Exponential future growth in data amount and science

> Solutions:

- Integrate, understand, and utilize data using <u>Al</u>
- Develop the Road Project Information System (IRIS)

> Benefits:

- Improve efficiency of mixture design and acceptance (reduce testing)
- Support decision-making for performance and budget management

Climate &

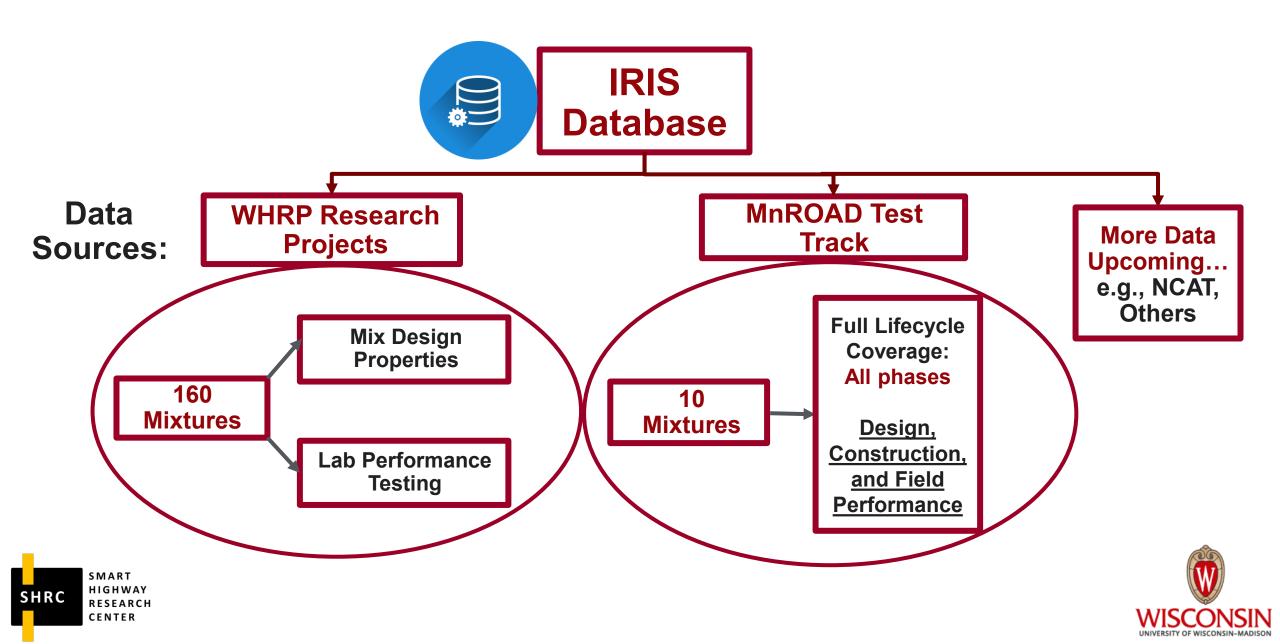
Traffic Data

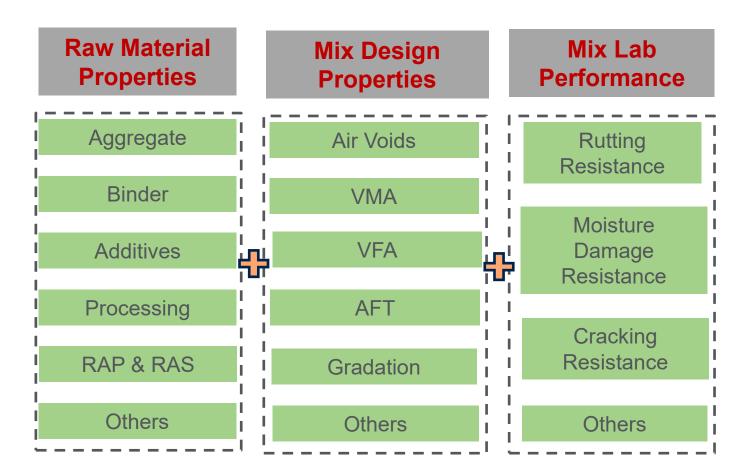
Construction

Data

IRIS- Current Focus and Progress

- > To date, we have enough data to work on the mix design phase:
 - Volumetrics design
 - Performance-based design
 - ✓ Balanced Mix Design
 - Prototype AI tools will be posted on our website
 - ✓ Expected in March 2026
- > We also have ideas for:
 - Low-cost monitoring of performance to start data collection
- > Other phases will be added in the future





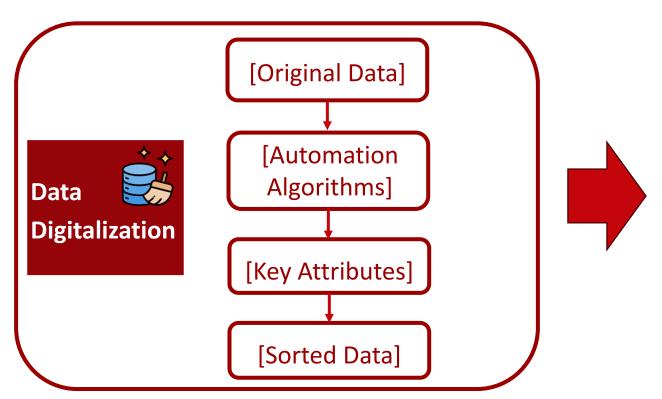
IRIS – Current (Preliminary) Database

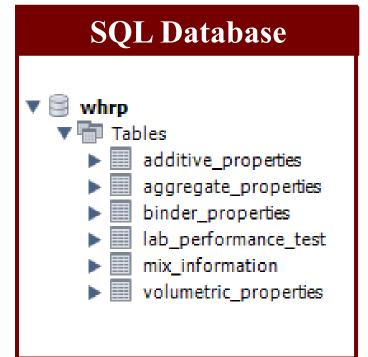
IRIS – Features of Existing Database

Various Data Attributes

Data Formats:

- Mix Design Report (MDR) / Job Mix Formula (JMF) - PDF/Excel/CSV...
- Volumetric Property Tables -PDF/Excel/CSV/TXT...
- Performance Test Results -PDF/Excel/CSV...
- Asphalt Binder Certificate of Analysis - PDF/Excel/CSV/TXT...
- Aggregate Properties and Consensus -PDF/Excel/CSV/TXT...


Miscellaneous Formats

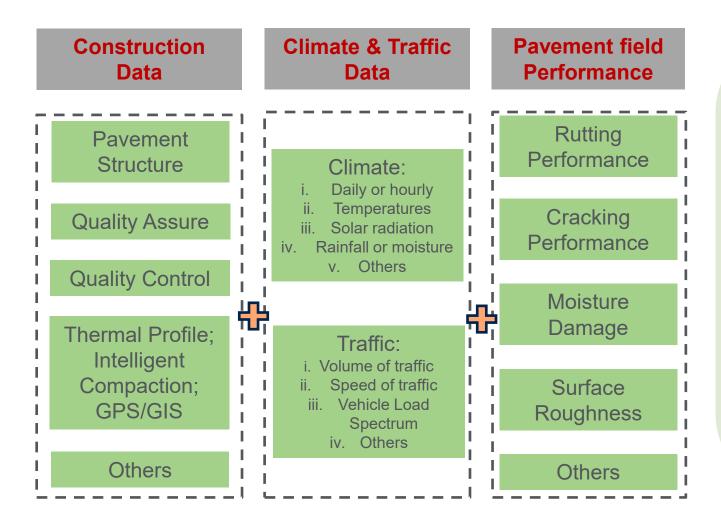


IRIS – Unified and Structured Database

Miscellaneous Data Formats

Unified Digital Database

Analysis


Modeling

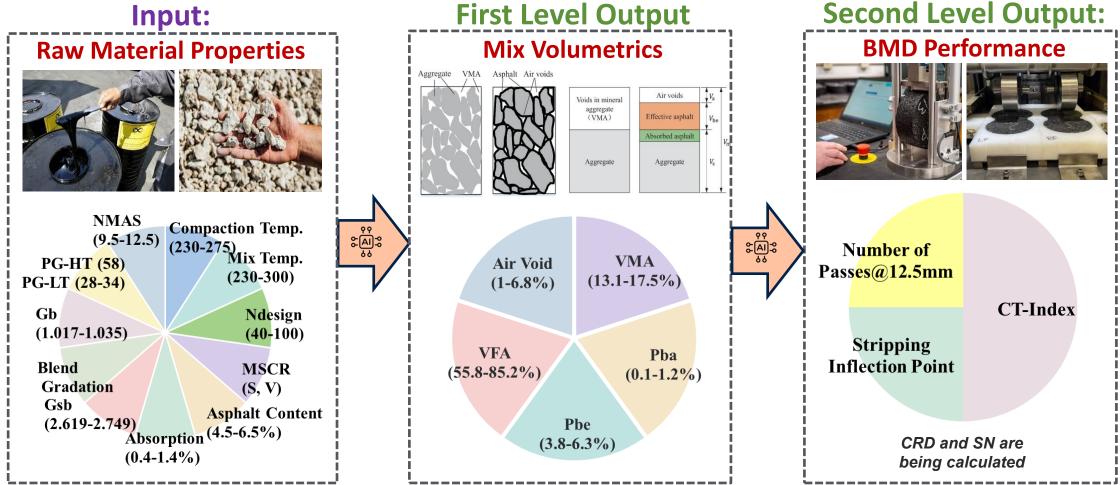
Visualization

IRIS – Features of Future Database

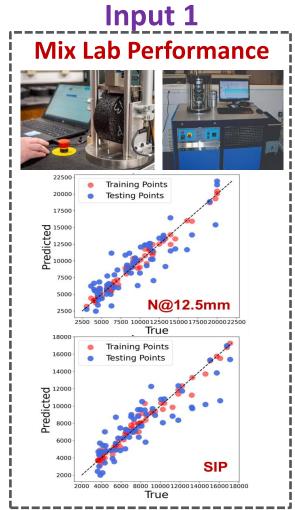
□ Construction Phase:

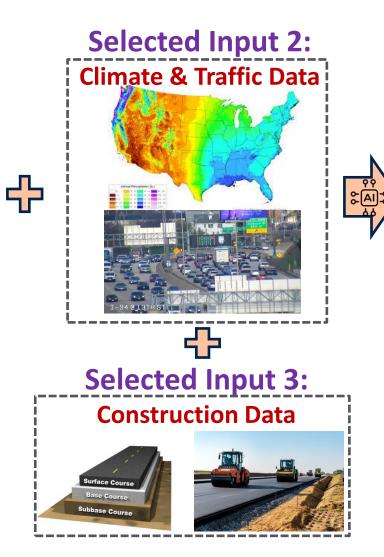
- Asphalt Production Log (Excel / PDF)
- Delivery Tickets (PDF / JPG)
- Quality Control Test Results (Excel / CSV)
- Quality Assurance Test Results (Excel / PDF)
- Paving Logs (Excel / PDF)
- Field Core Test Reports (Excel / PDF)
- Others

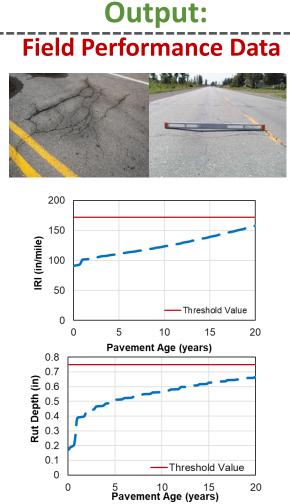
☐ Service Phase:


- Ride Quality / IRI (Excel / Sensor Data)
- Distress Survey (Crack, Rut, Pothole) (PDF / Excel / GIS file / Video)
- Maintenance Records (Excel/PDF)
- Rehabilitated Section Info (Excel/PDF)
- Climate & Traffic Records (Excel / CSV)
- Others

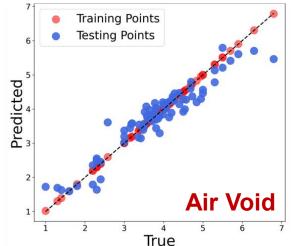
We need data from these phases

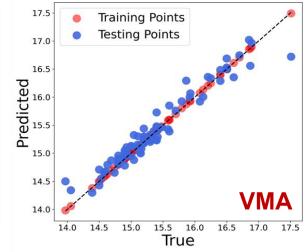

IRIS – Current Progress Predict Asphalt Mix Design and Lab Performance Using Al





IRIS – Future Plan Predict Field Performance and Maintenance using Al


Al-aided Asphalt Mix Design – Volumetrics Prediction

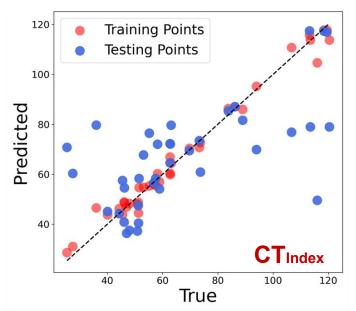

Data Preparation

- Remove incomplete entries
- Outlier detection (LOF + Z-score)
- Variables correlation analysis: avoid overfitting
- SHAP analysis: remove low-impact variables

> AI Modelling

 Machine learning algorithms: MLP, XGBoost, Random Forest, RidgeCV

Target	Setting	Training R ²	Testing R ²	RMSE
	Original	0.879	0.625	0.614
Air void	After Data Preparation	0.982	0.737	0.577
(%)	Bailey Method+ Retained%+SHAP	0.996	0.892	0.367
	Original	0.822	0.596	0.531
VMA	After Data Preparation	0.943	0.722	0.372
(%)	Bailey Method+ Retained%+SHAP	0.994	0.936	0.178



Al-aided Asphalt Mix Design – BMD Performance Prediction

Target	Setting	Testing R ²	RMSE
	Original	0.628	2612
N@ 12.5mm	Bailey Method+ Retained%+SHAP	0.798	1943
	Original	0.513	2499
SIP	Bailey Method+ Retained%+SHAP	0.763	1745

Target	Setting	Testing R ²	RMSE
	Original	0.412	20.7
CT-Index	Bailey Method+ Retained%+SHAP	0.514	15.6

Challenges:

- Limited amount of CT-Index data (~42 mixes)
- Tested on unaged or aged mixes

>We need more data for model improvement

Al-aided Asphalt Mix Design – Prediction Models Validation

> Five New Asphalt Mix Designs

- Not included in the AI testing and training dataset
- MnDOT Surface Mix Design

Volumetrics

BMD Performance (HWTT)

Mix Type	Air Void%	Predicted AV%	Residual AV%
SPWEC440	4	4.1	0.1
SPWEB440	4	3.8	-0.2
SPWEA440	4	3.7	-0.3
SPWEB340	4	4.1	0.1
SPWEB430	3	3.4	0.4

Mix Type	Measured N12.5	Predicted N12.5	% Error
SPWEC440	>20000	>20000	-
SPWEB440	19720	19537	0.93%
SPWEA440	20000	18750	6.25%
SPWEB340	14405	12981	9.88%
SPWEB430	20000	18270	8.65%
			/ 440 00/1

(<±0.5%)

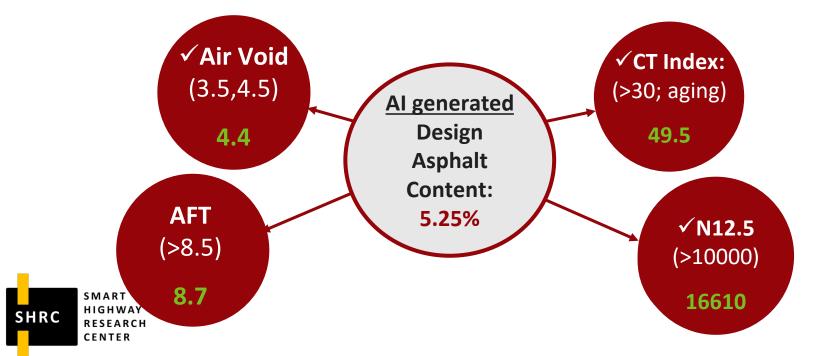
(<16.6%)

Mix Type	VMA%	Predicted VMA%	Residual VMA%
SPWEC440	15.7	15.4	0.3
SPWEB440	15.5	15.4	0.1
SPWEA440	16.0	15.7	0.3
SPWEB340	14.9	15.0	-0.1
SPWEB430	14.7	14.9	-0.3

Mix Type	Measured SIP	Predicted SIP	% Error
SPWEC440	>20000	>20000	-
SPWEB440	19720	19537	0.93%
SPWEA440	20000	18751	6.25%
SPWEB340	14405	12981	9.88%
SPWEB430	20000	18270	8.65%

(<±0.5%)

(<23.9%



NCHRP 10-87, Precision Estimates of AASHTO T 324

Al-aided Asphalt Mix Design – Mix Design Optimization

- Gradation and other properties are given
- > Optimization Objective:
 - Determine the asphalt content to meet both
 Volumetric and Performance Requirements

Optimization Constraints / Performance Targets:

More Objectives/Targets Can Be
Added:

Asphalt Properties;

Aggregate Properties;

Performance Criteria;

IRIS – Example Benefits Improvement in Design Efficiency

Current Practice

Trial Mix Design (iterative loop):

Traffic/climate → Binder selection (PG-grade, MSCR)

Traffic/climate → Trial gradations: 2–3 options

Target volumetrics & performance→ Trial binder contents: 3–4 options

Lab: Iterate until specs met: 6–12 tests (~3–4 h/test; ~24–48 h total)

Typical workload:

6–12 tests × ~3–4 h/test = ~24–48 h (~1 week)

Al-aided Mix Design

Workflow:

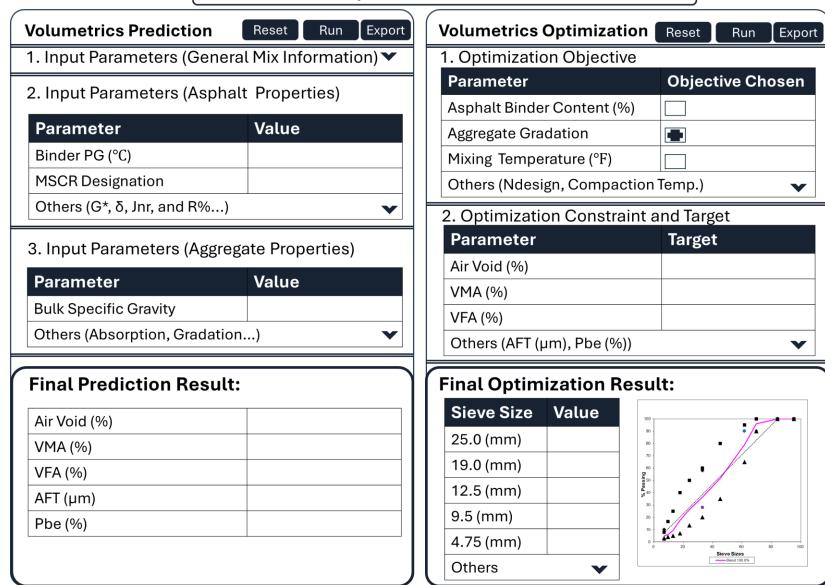
Traffic/climate → Binder selection (PG-grade, MSCR)

Target volumetrics & performance + traffic/climate → Optimal gradation: 1 option

Target volumetrics & performance → Optimal binder content: 1 option

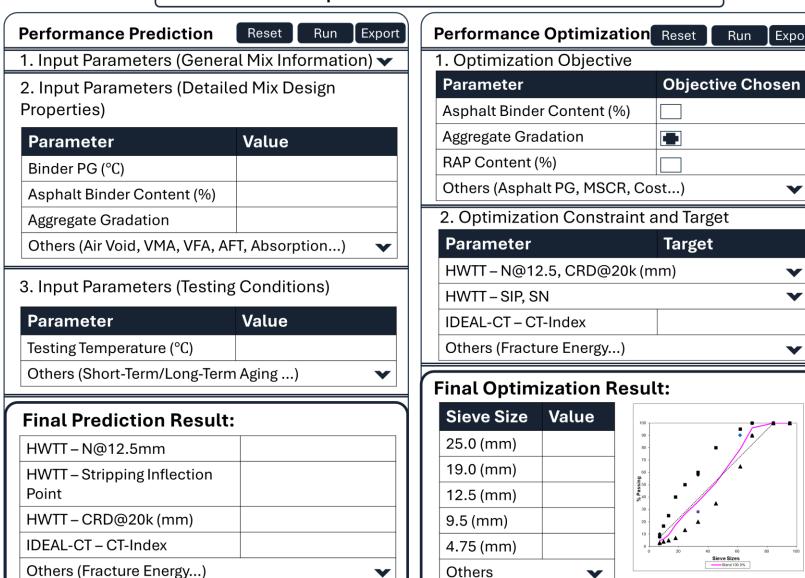
Lab: 1 test to verify and fine-tune (~3–4 h)

Current workload:


1 test to verify = ∼3–4 h

IRIS – Webtools (Expected in March 2026) Implementation – Access and use of Al tools

SHRC Website: https://uwmarc.wisc.edu/IRIS-Volumetrics

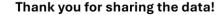


IRIS – Webtools (Expected in March 2026) Implementation – Access and use of AI tools

SHRC Website: https://uwmarc.wisc.edu/IRIS-BMD Performance

Export

IRIS – Webtools (Expected in March 2026) Data Upload and Reward Features


- ➤ Interface for data uploading will be developed:
 - Raw material properties/JMF
 - Performance testing results
 - Others
 - · Keep data confidential
- > Reward points for data sharing:
 - Free trials
 - License of tools

Please get in touch with us if you are interested in data sharing!

SHRC Website: https://uwmarc.wisc.edu/IRIS-Data Upload

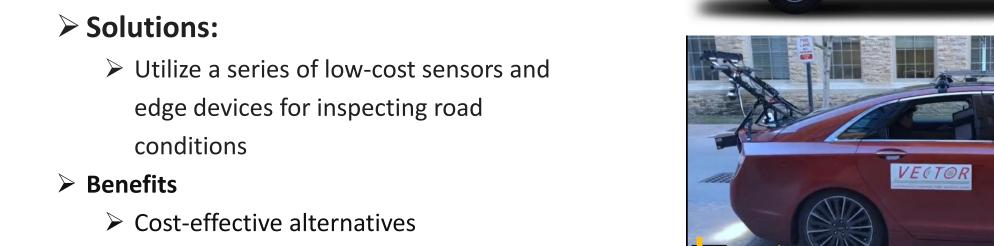
File Name	File Description	Upload
Mix Design or JMF		±
Lab Crackin/Rutting Performance Test		±
Production QA/QC		±
Construction Record		£
Lab Testing on Cores		£
Field Distress Data		£
Maintenance History		£
Others	1	

IRIS - Vision Big Effort - Great Reward

> "Data is the oil, some say the gold, of the 21st century" - Joe Kaeser, CEO of Siemens

Low-cost Pavement Condition Evaluation

Low-cost Roadway Condition Inspection


> Current condition evaluation:

Dedicated Inspection Vehicle

> Challenges:

- Expensive Inspection Vehicle and Data **Processing**
- Low inspection frequency

More coverage and frequency

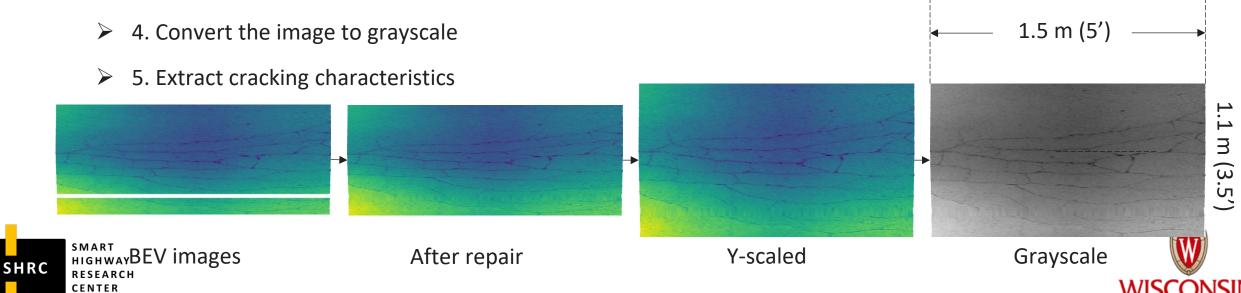
Example - Pavement Condition Evaluation

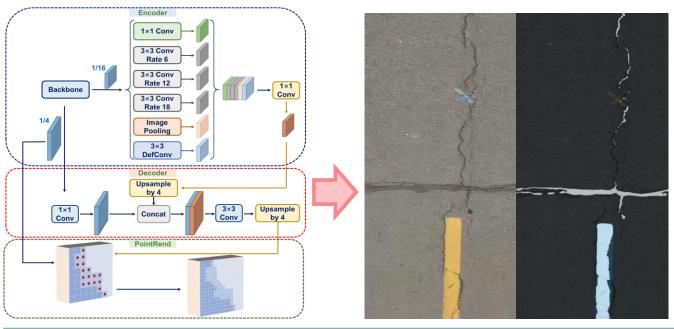
→ Project Background:

- > HMA Overlay:
 - 2" overlay for 1 mile length
 - A trial project for an Iowa DOT research effort
- > Inspection before overlay
 - Requested by contractor
 - Reflective cracking study

> System Setup:

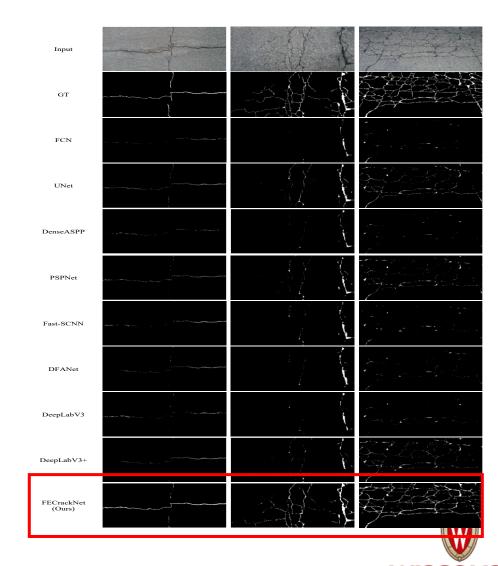
- Laser beam mounted on research vehicle
 - Cost: <\$10k
 - 3D surface profile point cloud
- ➤ GNSS system to record GPS coordinates



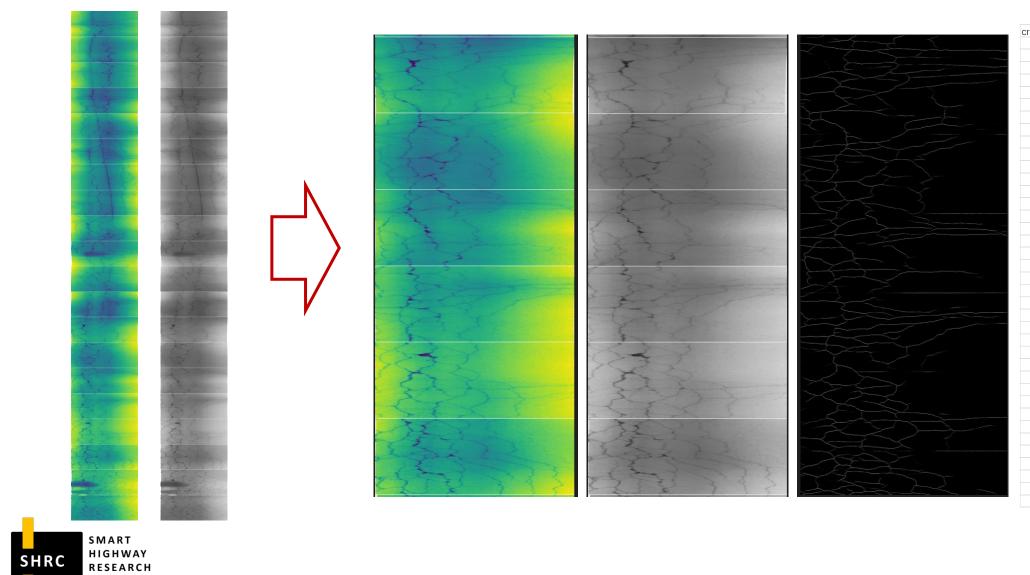

Example - Pavement Condition Evaluation

Data Collection and Processing Details:

- > 5 runs on the two-lane road, 5 miles/hr.
- Processing steps:
 - > 1. Render BEV images from point cloud
 - 2. In-image repair (row fill, per-segment vertical fill, horizontal stretch)
 - 3. Y-scale by integrated speed from IMU



Cracking Characteristics Extraction


Model	Acc	Pre	Re	F1	mloU
FCN	97.558	63.282	19.558	29.881	66.972
UNet	98.075	85.643	33.213	47.864	72.939
DenseASPP	97.597	80.552	12.753	22.020	67.809
PSPNet	98.165	86.976	36.464	51.386	75.356
Fast-SCNN	98.082	87.224	32.670	47.536	75.619
DFANet	97.832	86.844	21.809	34.863	70.468
FECrackNet	98.398	71.508	66.108	68.702	75.803

HIGHWAY RESEARCH CENTER

Cracking Maps

CENTER

crack_id	X	y	thickness_p
1	144	25	2
2	145	27	2
3	904	41	2
3	905	41	2
3	906	41	2
3	907	41	2
3	908	41	2
4	913	41	2 2 2
4	914	41	2
4	915	41	2
4	916	41	2
4	917	41	2
5	919	41	2
5	920	41	2
5	921	41	2
6	925	40	2
6	926	40	2 2 2 2
6	927	40	2
6	928	40	2
6	929	40	2
7	156	45	2
7	157	45	2
7	158	45	2
7	159	45	2
7	160	45	2
7	160	46	2
7	161	46	2
7	162	46	2
7	162	47	2
7	163	47	
7	164	47	2
7	165	47	2
7	165	48	2 2 2 2
7	166	48	2
7	167	49	2 2 2 2
7	168	49	2
7	169	49	2
7	169	50	2
	103	30	~

Modular Autonomous Road Maintenance System (MARS)

MARS

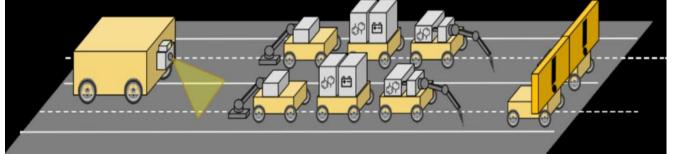
- Modular Autonomous Road Maintenance System (MARS)

Current maintenance: Manually or construction vehicles

> Challenges:

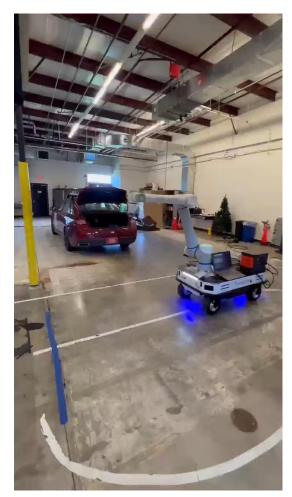
- ➤ Human labor intensive: limited efficiency; safety risks; labor shortage
- ➤ Heavy-duty equipment

> Solutions:


Develop a Modular Autonomous Road Maintenance System (MARS) based on multiple small robots with specialized functions

> Benefits

Improve efficiency and safety



MARS

- Preliminary Result and Prototype

Summary

- ➤ Development of Integrated Road Project Information System (IRIS)
 - Utilize data and AI to assist in asphalt mix design
- Low-cost Pavement Condition Evaluation
 - More accessible and cost-effective alternatives
- Modular Autonomous Road Maintenance System (MARS)
 - ➤ Leverage AI, sensing, and autonomy for road maintenance

Collaboration Opportunities

→ Data Sharing:

- > IRIS development:
 - Design, construction, and service
 - Reward points
 - Non-disclosure agreement

> Facilities Use:

- > SHRC labs/equipment for service
 - Material testing
 - Low-cost inspection; sensors; robotics

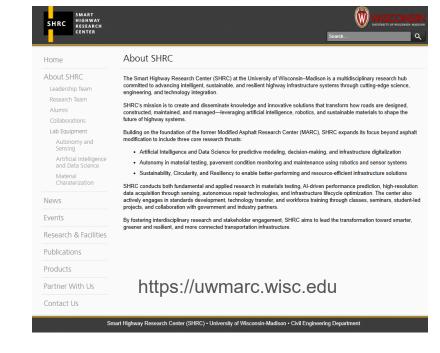
> Others:

SMART HIGHWAY

- > Customized projects
- Commercialization/patent

Acknowledgement

> SHRC Leadership Team:


- > Hussain Bahia, hubahia@wisc.edu
- > Xiaopeng (Shaw) Li, xli2485@wisc.edu
- ➤ Sikai (Sky) Chen, sikai.chen@wisc.edu

> Postdoctoral Researcher

➤ Gang Liu, *gliu244@wisc.edu*

Graduate Student

➤ Weiran Han, whan72@wisc.edu

Thanks!

Runhua Zhang: <u>runhua.zhang@wisc.edu</u> 3352 Engineering Hall 1415 Engineering Drive, Madison, WI

Smart Highway Research Center (SHRC): https://uwmarc.wisc.edu

Runhua Zhang, Hussain Bahia; Xiaopeng (Shaw) Li; Sikai (Sky) Chen University of Wisconsin-Madison