

About the Illinois Tollway
Perpetual pavements
Optimizing asphalt mix performance

ABOUT THE ILLINOIS TOLLWAY

PERPETUAL PAVEMENTS

PERPETUAL PAVEMENTS

Jane Addams Memorial Tollway (I-90)

- By design 13 centerline miles
- Rockford to Wisconsin state line
- Constructed 2007-2009
- Full-depth asphalt reconstruction

Reagan Memorial Tollway (I-88)

- By conversion 31 centerline miles
- Stage construction
- Stage 1 2005 10-inch PCC rubblization plus 6-inch HMA
- Stage 2 2015 Removed 2-inch surface, replaced with 4-6 inches of HMA, including an SMA surface

I-90 PERPETUAL PAVEMENT — FULL-DEPTH ASPHALT

Limiting strain – 70 μm

15-inches mainline HMA over open-graded aggregate base

12-inches mainline HMA over rubblized PCC

9-inch shoulders

6-inch shoulders

HOT-MIX ASPHALT PAVEMENT (FULL-DEPTH), 15" (40701981)

- (C1) 2" GTR MODIFIED HMA SURFACE COURSE, SMA, N80
- © 3" GTR MODIFIED HMA SURFACE COURSE, SMA, N80
- C3) 3.5" HMA BINDER COURSE, IL-19.0, N90
- (4) 3.5" HMA BINDER COURSE, IL-19.0, N70
- C5) 3" HMA BASE COURSE, IL-19.0, N50

I-90 PERPETUAL PAVEMENT – FRAP RESEARCH

Advanced research - FRAP

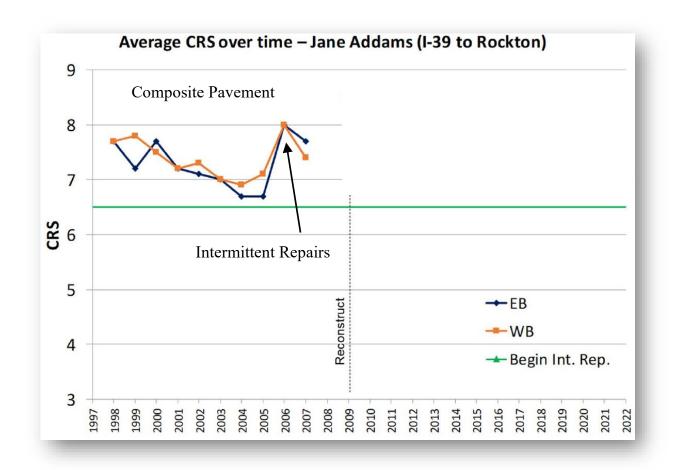
- SMA evaluations
 - Three coarse aggregates
 - GTR binder
 - Fine FRAP
- Dense-graded HMA
- Field trials: Full construction evaluation, rather than lab only
- Total contractor willingness to participate

Conclusions

- FRAP Good source of sand RAP for SMA
- Softer PG, high FRAP = good performance

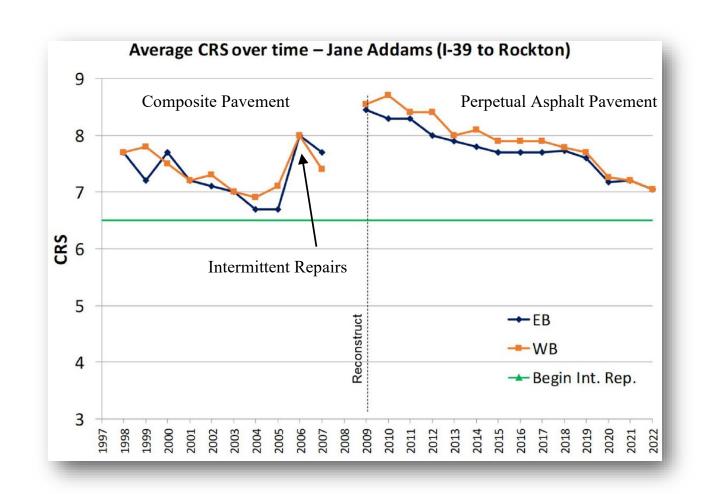
I-90 PERPETUAL PAVEMENT – RAS RESEARCH

Advanced research - RAS


- 2008 3.5 miles of permanent shoulder
- RAS from Wisconsin (No Beneficial Use Determination in Illinois, yet)
- Six binder and surface mixtures
- Conclusions
 - Low-temperature cracking is the most critical distress
 - Mixes with 5 percent RAS and greater than 40 percent FRAP may improve with a softer binder

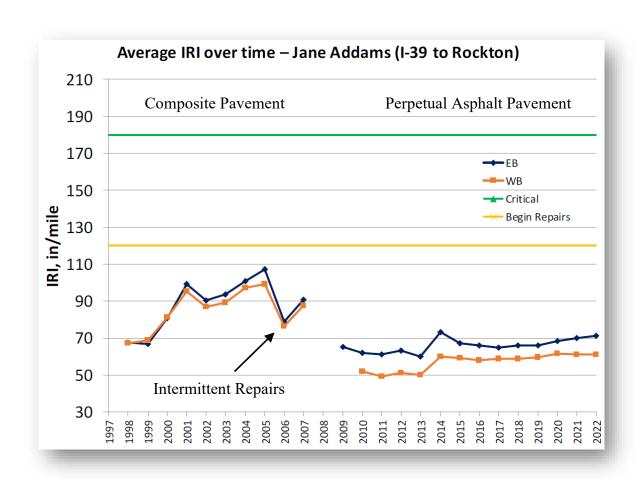
I-90 PERPETUAL PAVEMENT

Pavement performance (CRS) – before reconstruction


- Early 2000s overlay mode
- Decreasing life with each overlay

I-90 PERPETUAL PAVEMENT

Pavement performance (CRS) – after reconstruction


- Initial design life of the perpetual pavement – 15 years
- No full-depth patching
- Generally, only longitudinal joint maintenance

I-90 PERPETUAL PAVEMENT

Pavement performance – smoothness

Very little change since reconstruction

REAGAN MEMORIAL TOLLWAY (I-88) Pavement Conditions – 2004

REAGAN MEMORIAL TOLLWAY (I-88) Pavement Conditions – 2004

Severe D-cracking of underlying PCC

ISSUE/SOLUTION

The real issue

- Intermittent repairs
- Shoulders coming apart
- Blow-ups more common
- Estimate: Unmaintainable in winter
- Programmed for mill-overlay in 2007

Stage construction

- Build initial pavement cross section
- Monitor performance
- Complete the pavement at the right time

Illinois Tollway solution: Rubblization and overlay

STAGE 1 CONSTRUCTION – 2005

Rubblize existing pavement

Install underdrains

6-inch new HMA pavement

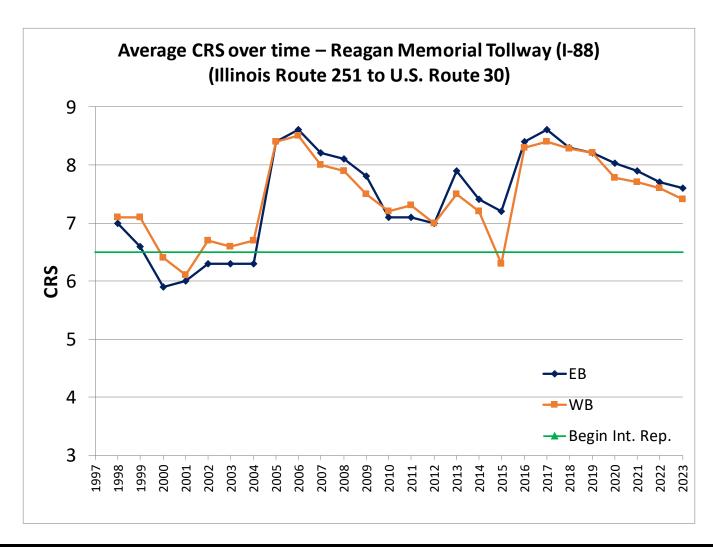
- 4-inch dense-graded binder mix with SBS polymer
- 2-inch dense-graded surface mix with SBS polymer

Extended fatigue life

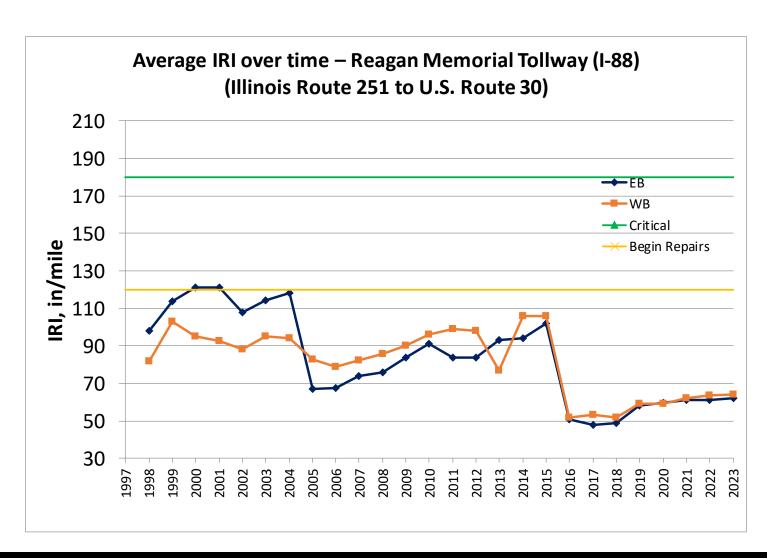
Competitive bids

STAGE 2 CONSTRUCTION – 2015

Mill the deteriorated 2-inch surface course


Add 6 inches of new HMA pavement

- 2-inch dense-graded N70 19mm binder mix
- 2-inch dense-graded N90 19mm binder mix
- 2-inch modified SMA 12.5mm surface mix

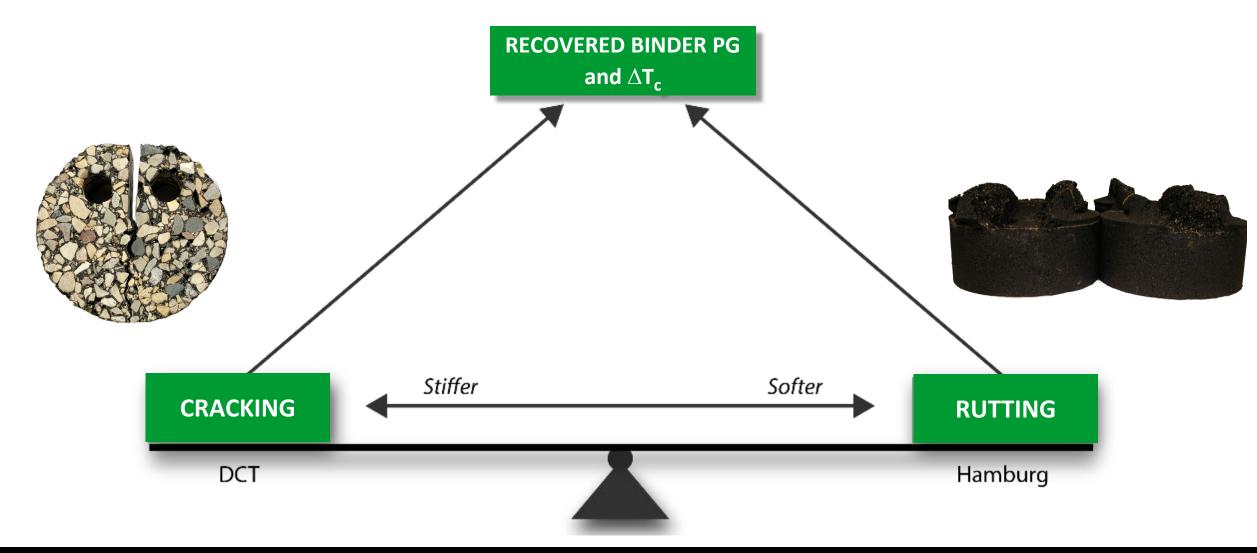

Pavement reconstruction under bridges – 11-inch full-depth asphalt

PAVEMENT CONDITION – CRS

SMOOTHNESS – IRI

STAGE CONSTRUCTION – CONCLUSIONS

Viable option for pavement rehabilitation


Able to monitor actual conditions, versus design assumption of pavement strength

Can take advantage of materials and construction improvements

- SMA
- Paver improvements
- (And now, longitudinal joint sealant and other technologies)

PERFORMANCE-BASED MIX DESIGN

Recovered Binder PG

PG BINDER SELECTION

Reclaimed Asphalt Material		RAP/FRAP/RAS	FRAP/RAS	Category 1/FRAP with RAS
ABR		0-17%	18-33%	34-50%
Allowable Mix Options	SMA and IL-4.75	SBS/SBR 70-28 GTR PG 70-28 PG 58-28 10% Dry GTR		SBS/SBR 64-34 GTR PG 64-34 PG 52-34 [/] 10% Dry GTR PG 46-34 [/] 10% Dry GTR
	Unmodified SMA and Binder & Surface Course	PG 58-28		PG 52-34 PG 46-34
	Asphalt Stabilized Subbase	PG 58-28		

CONTRACTOR OPTIONS

PG binder modification

 All three binder choices (SBS polymer, terminal blend GTR, dry crumb rubber) are being used in Tollway SMA

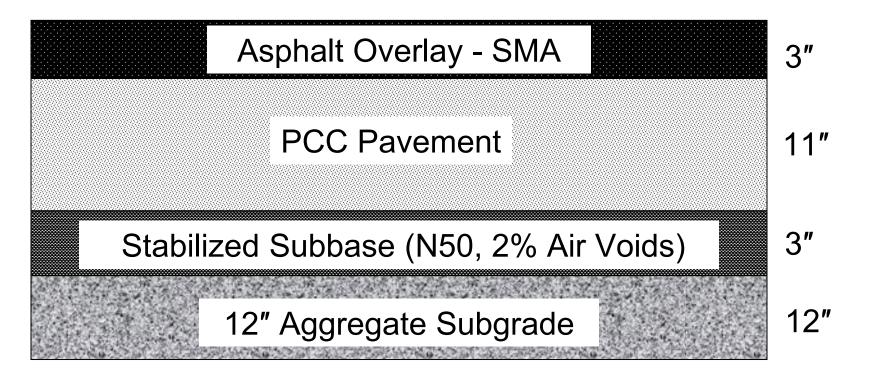
ABR – can tailor FRAP and RAS to their situation

Warm-mix asphalt – must use

DCT REQUIREMENTS

Performance-Based Balanced Mix Design

Tollway Table 11 – DCT Requirements							
Mixture T	ype	Minimum Fracture Energy					
	Friction Surface	775 J/m ²					
CNAA	Surface	700 J/m ²					
SMA	Binder	650 J/m ²					
	Unmodified	500 J/m ²					
Mainline Binder Course	Ndesign > N50	425 J/m ²					
Mannine Billder Course	Ndesign = N50	450 J/m ²					
Surface Co	ourse Ndesign ≤ N70	450 J/m ²					
Sho	ulder Binder Course	425 J/m ²					
Asp	halt Stabilized Base	N/A					
	IL 4.75	450 J/m ²					


HAMBURG REQUIREMENTS Performance-Based Balanced Mix Design

Tollway Table 10 — Hamburg and Stripping Inflection Point Requirements							
Mixture Type	Maximum Rut Depth	Max. Rut Depth Recorded at # Wheel Passes	Min. # of Wheel Passes at Stripping Inflection Point ¹				
SMA ²	6 mm	20,000	15,000				
Unmodified SMA	9 mm	15,000	10,000				
IL -4.75	12.5 mm	15,000	10,000				
Mainline Binder Course Ndesign > N50	12.5 mm	15,000	10,000				
Mainline Binder Course Ndesign = N50	12.5 mm	10,000	7,500				
Surface Course Ndesign ≤ N70	12.5 mm	10,000	7,500				
Shoulder Binder Course	12.5 mm	7,500	5,000				
Asphalt Stabilized Subbase	12.5 mm	7,500	5,000				

^{1.} If the stripping inflection point does not meet minimum requirements, the designer has the option to perform the Tensile Stripping Ratio (TSR) test per article 1030.04 (c)

^{2.} Calculation of the stripping inflection point is not required for SMA with less than 4.0 mm rut depth at 20,000 passes

CENTRAL TRI-STATE TOLLWAY (I-294) MAINLINE

- Stabilized Subbase for dowel support, pavement stability, prevention of aggregate egress into concrete pavement joints.
- Subgrade Aggregate is open graded to allow water to drain away from the pavement.

