## **Back to Basics - Volumetrics**



November 28, 2017 Paul Eggen, P.G.

**OMNI** 

Informed by and "borrowing" from. . .

# Back 2 Basics: Volumetrics

#### Understanding How They Control Performance

April 4, 2017

webinars

**Gerry Huber** Heritage Research Group

# *"I learn something new every day. The problem is, most of it is stuff that I probably should already*

know."

Unknown

#### History of Mix Design & Volumetrics



History of Asphalt Mix in North America – Asphalt Magazine

#### History of Mix Design & Volumetrics



# Rutting in the 1980s eventually led to Superpave



#### History of Mix Design & Volumetrics





ASPHTEC-1, January 1992

## Terminology

- **Volumetric** Of or relating to measurement by volume.
- **Gravimetric** Of or relating to measurement by weight.
- Empirical Based on observation or experience rather than logic or theory (measured).

### **Superpave Empirical Properties**

#### \* Aggregates





# Compacted Mix



### Terminology: Specific Gravity

 Relates Density of an Object to the same Volume of Water



The "Rosetta Stone" for asphalt mix volumetrics

#### Terminology: Specific Gravity

- Specific Gravity Terms "G"
  - G<sub>mb</sub> bulk specific gravity of the compacted mix. (Gyratory Puck or Pavement Core)
  - $G_b$  specific gravity of the binder (~1.03)

### Teminology: Specific Gravity

- Specific Gravity Terms "G"
  - G<sub>mm</sub> theoretical maximum specific gravity of the mix. Uncompacted, no air
    - voids. (Rice test)



#### Terminology: Specific Gravity

- Specific Gravity Terms "G"
  - G<sub>mb</sub> bulk specific gravity of the compacted mix.
    - (Gyratory Puck or
    - Pavement Core)



#### Terminology: Specific Gravity

Specific Gravity Terms "G"

- • $G_b$  specific gravity of the binder (~1.03)
- ${\, {\, \bullet } \, G_{sb}}$  bulk specific gravity of the aggregate
- G<sub>se</sub> effective specific gravity of the aggregate

#### Volume for Bulk Gravity



#### Gray + Blue area

Volume of the aggregate plus Volume of voids penetrated by water

### Volume for Effective Gravity



Gray + White area

Volume of the aggregate plus Volume of voids penetrated by water but not by asphalt

## Terminology

- Air voids (V<sub>a</sub>) Total volume of air in a compacted mix. (3%-4%)
  V = 100 x (G G · )/G
- $V_a = 100 \times (G_{mm} G_{mb})/G_{mm}$
- Low voids potential for rutting
- High voids lower compaction and loss of durability
- Voids are a big deal!



## Terminology

- Effective Asphalt Content (P<sub>be</sub>) – % of non-absorbed asphalt
- $P_{be} = P_b P_{ba}$
- $\bullet\, P_{ba}$  calculated using  $G_{se}$  and  $G_{sb}$
- Gravimetric



# Compacted Specimen with Asphalt Removed







Gerry Huber – Heritage Research Group, 2017



- Definition: *volume* of intergranular void space in a compacted mix % by volume total mix.
- •VMA =  $100-[G_{mb} \times (100-P_b)/G_{sb})$
- Strongly influenced by gradation.
- Increased VMA = Increased Asphalt Content = Increased Film Thickness

#### 12.5 mm Mix - .45 Power Curve

AGGREGATE BLEND



#### 9.5 mm Porous - .45 Power Curve



Mix VMA Requirements Voids in the Mineral Aggregate

#### % binder

#### Nom Max Size (Grade) (mm)

#### Minimum VMA %

| 5 | 9.5  |
|---|------|
| 4 | 12.5 |
| 3 | 19   |
| 2 | 25   |
| 1 | 37.5 |

15.0 (15.5) 14.0 (14.5) 13.0 12.0 11.0

#### VMA vs. Asphalt Content



26

## Terminology

- Voids Filled with Binder (VFB or VFA) The percentage of VMA filled with asphalt binder.
- VFB =  $100 \times (VMA-V_a)/VMA$
- Generally required to be between about 65 75%.
- Volumetric

## AASHTO M323 Volumetric Properties (Compacted Mix)

|                                                  | 9.5-mm | 12.5-mm | 19.0-mm | 25.0-mm |
|--------------------------------------------------|--------|---------|---------|---------|
| Voids in Mineral<br>Aggregate, %                 | 15.0   | 14.0    | 13.0    | 12.0    |
| Air Voids, %                                     | 4.0    | 4.0     | 4.0     | 4.0     |
| Minimum Effective<br>Volume Asphalt<br>Binder, % | 11.0   | 10.0    | 9.0     | 8.0     |

Gerry Huber – Heritage Research Group, 2017

#### Asphalt Outside the Aggregate

\* Convert percent volume to percent weight



|                      | 9 <b>.</b> 5-mm | 12.5-mm | 19 <b>.</b> 0-mm | 25.0-mm |  |
|----------------------|-----------------|---------|------------------|---------|--|
| Percent by<br>Volume | 11.0%           | 10.0%   | 9.0%             | 8.0%    |  |
| Percent by<br>Weight | 4.4%            | 4.0%    | 3.6%             | 3.2%    |  |

Values approximate depending upon specific gravity of aggregates

Gerry Huber – Heritage Research Group, 2017

#### Why Focus on Effective Binder Content?



#### Why not just focus on total binder content?

### <u>SAME</u> VMA and <u>Different</u> AC Contents?

\* Design 1
 \* VMA = 13.4%
 \* Voids = 4.0%
 \* Total AC = 4.6%
 \* Design 2
 \* Vesign 2
 \* VMA = 13.4%
 \* Voids = 4.0%
 \* Total AC = 4.6%

• The Difference Is Asphalt Absorption

Gerry Huber – Heritage Research Group, 2017

#### How Much Asphalt is Enough?

#### \* Total Asphalt Content

Inside RockOutside Rock

Values approximate depending upon specific gravity of aggregates and actual absorption

| no               |    | 9.5-mm | 12.5-mm | 19.0-mm | 25.0-mm |
|------------------|----|--------|---------|---------|---------|
| Water Absorption | 0% | 4.4%   | 4.0%    | 3.6%    | 3.2%    |
| vbso             | 1% | 4.9%   | 4.5%    | 4.1%    | 3.7%    |
| er A             | 2% | 5.6%   | 5.2%    | 4.8%    | 4.4%    |
| Wat              | 3% | 6.3%   | 5.9%    | 5.5%    | 5.1%    |
|                  | 4% | 7.0%   | 6.6%    | 6.2%    | 5.8%    |

Gerry Huber – Heritage Research Group, 2017

#### Superpave fixed the rutting problem but lowered effective asphalt contents which led to loss of durability



#### WisDOT Aggregate Specifications

| TABLE 400-1 AGGREGATE GRADATION MASTER RANGE AND VMA REQUIREMENTS |                                   |                    |                   |                     |                                |                        |                       |
|-------------------------------------------------------------------|-----------------------------------|--------------------|-------------------|---------------------|--------------------------------|------------------------|-----------------------|
|                                                                   | PERCENT PASSING DESIGNATED SIEVES |                    |                   |                     |                                |                        |                       |
| SIEVE                                                             | NOMINAL SIZE                      |                    |                   |                     |                                |                        |                       |
|                                                                   | <mark>No. 1</mark><br>(37.5 mm)   | No. 2<br>(25.0 mm) | No.3<br>(19.0 mm) | No. 4<br>(12.5 mm)  | <mark>No. 5</mark><br>(9.5 mm) | SMA No. 4<br>(12.5 mm) | SMA No. 5<br>(9.5 mm) |
| 50.0-mm                                                           | 100                               |                    |                   |                     |                                |                        |                       |
| 37.5-mm                                                           | 90 –100                           | 100                |                   |                     |                                |                        |                       |
| 25.0-mm                                                           | 90 max                            | 90 -100            | 100               |                     |                                |                        |                       |
| 19.0-mm                                                           |                                   | 90 max             | 90 -100           | 100                 |                                | 100                    |                       |
| 12.5-mm                                                           |                                   |                    | 90 max            | 90 -100             | 100                            | 90 - 97                | 100                   |
| 9.5-mm                                                            |                                   |                    |                   | 90 max              | 90 -100                        | 58 - 72                | 90 - 100              |
| 4.75-mm                                                           |                                   |                    |                   |                     | 90 max                         | 25 - 35                | 35 - 45               |
| 2.36-mm                                                           | 15 – 41                           | 19 - 45            | 23 - 49           | 28 - 58             | 32 - 67                        | 15 - 25                | 18 - 28               |
| 75-µm                                                             | 0 – 6.0                           | 1.0 - 7.0          | 2.0 - 8.0         | 2.0 - 10.0          | 2.0 - 10.0                     | 8.0 - 12.0             | 10.0 - 14.0           |
| % MINIMUM<br>VMA                                                  | 11.0                              | 12.0               | 13.0              | 14.0 <sup>[1]</sup> | 15.0 <sup>[2]</sup>            | 16.0                   | 17.0                  |

TABLE 460-1 AGGREGATE GRADATION MASTER RANGE AND VMA REQUIREMENTS

<sup>[1]</sup> 14.5 for LT and MT mixes.

<sup>[2]</sup> 15.5 for LT and MT mixes.

# Minimum VMA requirements increased for LT and MT mixes

#### Increase Asphalt Content by Lowering Voids

Effective with December 2016 Letting

ASP-6

#### ADDITIONAL SPECIAL PROVISION 6

#### ASP 6 - Modifications to the standard specifications

Make the following revisions to the standard specifications:

#### 460.2.1 General

Replace the entire text with the following effective with the December 2016 letting:

- (1) Furnish a homogeneous mixture of coarse aggregate, fine aggregate, mineral filler if required, SMA stabilizer if required, recycled material if used, warm mix asphalt additive or process if used, and asphaltic material. Design mixtures conforming to table 460-1 and table 460-2 to 4.0% air voids to establish the aggregate structure.
- (2) Determine the target JMF asphalt binder content for production from the mix design data corresponding to 3.0% air voids (97% Gmm) target at the design the number of gyrations (Ndes). Add liquid asphalt to achieve the required air voids at Ndes.

#### Determine Asphalt Content @ 4.0% Voids



% binder

Use linear regression to determine asphalt content at 3.0% air voids
## Asphalt Content @ 4.0% & 3.0% Voids



Increase in  $P_b$  goes directly to  $P_{be}$  = increased film thickness

# Bottom Line - VMA is King

- Allows for increased effective asphalt volume (film thickness) while maintaining voids.
- •Improves durability while maintaining rut resistance.



# Balance the Mix Design



Not to be confused with "Balanced Mix Designs"

Smooth Ouiet Ride Skid Resistance

Strength/ Stability

**Rut Resistance** 

Shoving

Flushing Resistant



Permeability

#### DON'T ATTACK ONE HALF AT THE EXPENSE OF THE OTHER HALF!!

Dave Johnson – Asphalt Institute, 2016

## **Calculating Effective Binder Content**



What goes into the calculation?

# Calculation of Effective Asphalt Content

$$P_{be} = P_b - \left( \left( \frac{P_{ba}}{100} \right) \times (100 - P_b) \right)$$

$$P_{ba} = \left(\frac{G_{se} - G_{sb}}{G_{se} \ast G_{sb}}\right) \ltimes G_{b}$$

$$G_{se} = \frac{(100 - P_b)}{\left(\frac{100}{G_{mm}} - \frac{P_b}{G_b}\right)}$$

$$VMA = 100 - \left( \underbrace{G_{mb}}_{G_{sb}} \times (100 - P_b) \right)$$

"Measurement of Effective Asphalt Content" Canadian Technical Asphalt Association 2016

#### 12.5-mm NMPS Mixture Properties

| * P <sub>b</sub>  | 5.4%  |
|-------------------|-------|
| * G <sub>mb</sub> | 2.419 |
| * G <sub>mm</sub> | 2.520 |
| * G <sub>sb</sub> | 2.672 |
| * G <sub>b</sub>  | 1.030 |
| *VMA              | 14.4% |
| * Air Voids       | 4.0%  |
| * P <sub>ba</sub> | 1.05% |

\* Which measured value has most impact on effective asphalt calculation?

## Asphalt Binder Specific Gravity



## Asphalt Binder Content



# Maximum Specific Gravity



# Aggregate Bulk Specific Gravity



# Aggregate Bulk Specific Gravity

# \* AASHTO D2S \* Coarse Aggregate \* Fine Aggregate 0.066

# \* 50:50 Blend \* Say 0.052

Gerry Huber – Heritage Research Group, 2017

# Effect of Incorrect $G_{sb}$ (+/- 0.052)

| Property                                                  | 2.620          | 2.672 | 2.724 |
|-----------------------------------------------------------|----------------|-------|-------|
| Voids in Mineral Aggregate (VMA)                          | 14.4%          | 14.4% | 14.4% |
| Volume of Effective Binder (V <sub>be</sub> )             | 10 <b>.</b> 4% | 10.4% | 10.4% |
| Calculated Absorbed Asphalt Content<br>(P <sub>ba</sub> ) | 1.80%          | 1.05% | 0.48% |
| Effective Asphalt Content (P <sub>be</sub> )              | 4.46%          | 4.41% | 4.41% |
|                                                           |                |       |       |
| Asphalt Binder Content (P <sub>b</sub> )                  | 6.15%          | 5.40% | 4.87% |

Gerry Huber – Heritage Research Group, 2017

# With Correct G<sub>sb</sub>

| Property                                                                                    | 2.672 | 2.672 | 2.672 |
|---------------------------------------------------------------------------------------------|-------|-------|-------|
| Asphalt Binder Content (P <sub>b</sub> )                                                    | 6.15% | 5.40% | 4.87% |
|                                                                                             |       |       |       |
| Voids in Mineral Aggregate (VMA)                                                            | 16.0% | 14.4% | 13.2% |
| Volume of Effective Binder (V <sub>be</sub> )                                               | 12.0  | 10.4  | 9.2   |
| Calculated Absorbed Asphalt Content<br>(P <sub>ba</sub> )                                   | 1.07% | 1.05% | 1.05% |
| Effective Asphalt Content (P <sub>be</sub> )<br>Gerry Huber – Heritage Research Group, 2017 | 5.15% | 4.41% | 3.87% |



# How do performance tests tie into empirical properties??

Gerry Huber – Heritage Research Group, 2017

## **Rutting Test Failure**



- \* Aggregate
  - \* Crushed faces
- \* Fine Aggregate Angularity
  - \* Surface chemistry
- \* Asphalt binder
- \* High temperature PG
  - \* Low temperature PG
- \* Proportions
- 🗙 \* Air voids
- \* Volume effective asphalt
   X \* Voids filled with Asphalt

# Fatigue Cracking Test Failure



- Aggregate
  - \* Crushed faces
  - \* Fine Aggregate Angularity
  - \* Surface chemistry
- \* Asphalt binder
- \* High temperature PG
  - \* Low temperature PG
- \* Proportions
  - \* Air voids
- Volume effective asphalt
   \* Voids filled with Asphalt

# Low Temperature Cracking Test Failure



- Aggregate
  - \* Crushed faces
  - \* Fine Aggregate Angularity
  - \* Surface chemistry
- \* Asphalt binder
  - \* High temperature PG
- ? \* Low temperature PG
- \* Proportions
  - \* Air voids
- \* Volume effective asphalt
   \* Voids filled with Asphalt

## Moisture Damage Test Failure



- Aggregate
  - \* Crushed faces
  - \* Fine Aggregate Angularity
- \* Surface chemistry
- \* Asphalt binder
  - \* High temperature PG
  - \* Low temperature PG
- \* Proportions
  - \* Air voids
- % \* Volume effective asphalt \* Voids filled with Asphalt

# Aging Relationship to Empirical Properties



- \* Aggregate
  - \* Crushed faces
  - \* Fine Aggregate Angularity
  - \* Surface chemistry
- \* Asphalt binder
  - \* High temperature PG
  - \* Low temperature PG
- \* Proportions
  - \* Air voids
- \* Volume effective asphalt
   \* Voids filled with Asphalt
- Voids filled with Asphalt

#### Bottom Line - VMA is King

- Allows for increased effective asphalt volume (film thickness) while maintaining voids.
- Improves durability while maintaining rut resistance.





- •Relatively inexpensive testing and can be quickly determined.
- •Has been used to predict performance in past.
- •Will likely still play a role in the age of performance testing (surrogate properties).



Thank you!!

# Questions?