Back 2 Basics: Mix Design

Randy West

Director, National Center for Asphalt Technology

Objectives

Describe the Superpave mixture requirements for a highway-class dense-graded asphalt paving mixture
AASHTO M 323
Summarize the Superpave mix design process

• AASHTO R 35

AASHTO Standards

Standard Practice for

Superpave Volumetric Design for Hot-Mix Asphalt (HMA)

AASHTO Designation: R 35-04

1. SCOPE

- 1.1. This standard for mix design evaluation uses aggregate and mixture properties to produce a hotmix asphalt (HMA) job-mix formula. The mix design is based on the volumetric properties of the HMA in terms of the air voids, voids in the mineral aggregate (VMA), and voids filled with asphalt (VFA).
- 1.2. This standard may also be used to provide a preliminary selection of mix parameters as a starting point for mix analysis and performance prediction analyses that primarily use T 320 and T 322.
- 1.3. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. REFERENCED DOCUMENTS

- 2.1. AASHTO Standards:
 - M 320, Performance-Graded Asphalt Binder
 - M 323, Superpave Volumetric Mix Design
 - R 30, Mixture Conditioning of Hot-Mix Asphalt (HMA)
 - T 2, Sampling of Aggregates
 - T 11, Materials Finer Than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
 - T 27, Sieve Analysis of Fine and Coarse Aggregates
 - T 84, Specific Gravity and Absorption of Fine Aggregate
 - T 85, Specific Gravity and Absorption of Coarse Aggregate
 - T 100, Specific Gravity of Soils

Standard Specification for

Superpave Volumetric Mix Design

AASHTO Designation: M 323-07

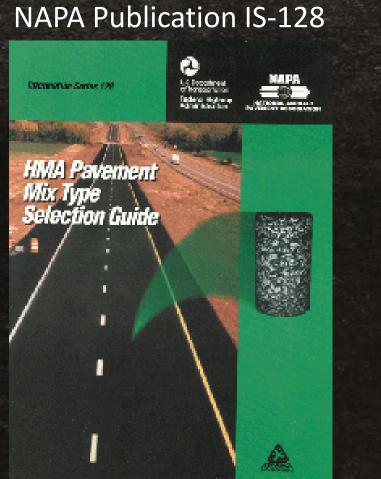
1. SCOPE

- 1.1. This specification for Superpave volumetric mix design uses aggregate and mixture properties to produce a hot-mix asphalt (HMA) job-mix formula.
- 1.2. This standard specifies minimum quality requirements for binder, aggregate, and HMA for Superpave volumetric mix designs.
- 1.3. This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this procedure to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

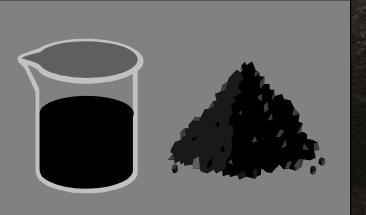
2. REFERENCED DOCUMENTS

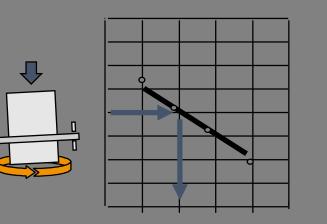
AASHTO Standards:

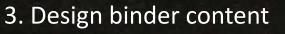
2.1.

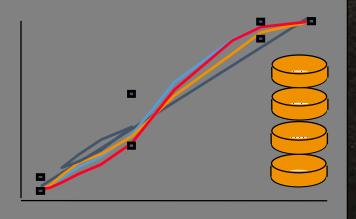

- M 320, Performance-Graded Asphalt Binder
- R 35, Superpave Volumetric Design for Hot-Mix Asphalt (HMA)
- T 11, Materials Finer Than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing
- T 27, Sieve Analysis of Fine and Coarse Aggregates
- T 164, Quantitative Extraction of Asphalt Binder from Hot-Mix Asphalt (HMA)
- T 170, Recovery of Asphalt from Solution by Abson Method
- T 176, Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test
- T 283, Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage
- T 304, Uncompacted Void Content of Fine Aggregate
- T 308, Determining the Asphalt Binder Content of Hot-Mix Asphalt (HMA) by the Ignition Method
- T 312, Preparing and Determining the Density of Hot-Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor

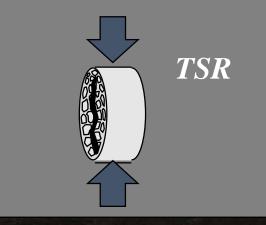
Mix Type Selection


- Select the right mix type for the pavement application
 - type of traffic/loads
 - layer-specific needs






4 Steps of Superpave Mix Design


1. Materials selection

2. Design aggregate structure

4. Moisture sensitivity

Pre-Mix Design Selection of Mixture Requirements

Project traffic

20-year design-lane ESALs

Project pavement cross-section

Layer thicknesses

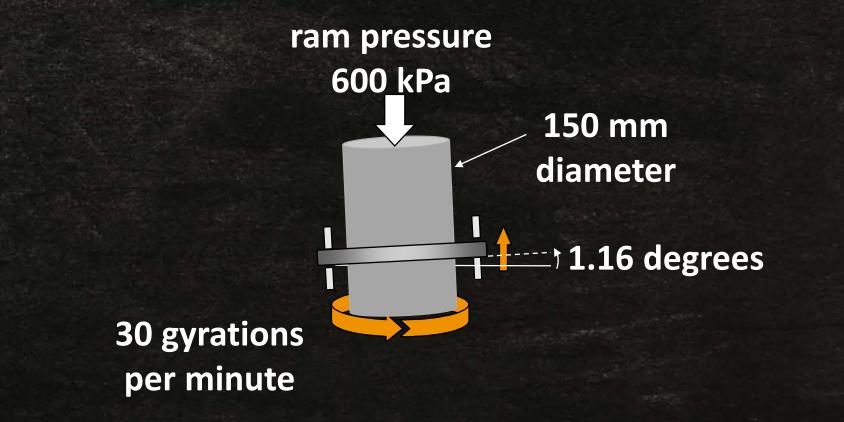
Pavement layer asphalt binder selection or project location

Goals of Laboratory Compaction

- Simulate field densification
 - Construction
 - Traffic affected by binder grade and pavement temperature

• Assess the mixture's compactability

In-Place HMA Density Change over Time/Traffic


Time/Traffic

Superpave Gyratory Compactor

- 150 mm diameter mold accommodates up to 37.5 mm NMAS
- Heights recorded through compaction process

Back

Basics

SGC Makes & Models

Back

Basics

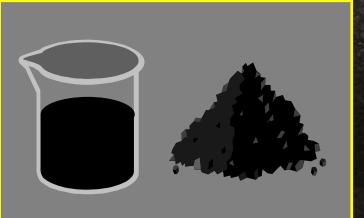
Gyratory Compaction

- Density of mixtures is evaluated at three points:
 - N_{initial}
 N_{design}
 N_{maximum}

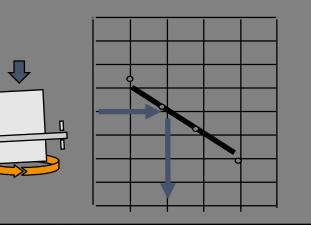
N represents numbers of gyrations

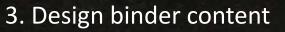
- The density at N_{design} (%G_{mm}@N_{design}) is the most important of these three points. It is where volumetric properties are determined.
- The density at N_{initial} %G_{mm}@N_{initial}) is used to assess the strength of the aggregate structure.
- The density at N_{max} (%G_{mm}@N_{max}) is used to determine if the mix may tend to continue to densify under long-term heavy traffic.

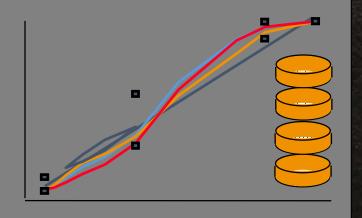
Current AASHTO R35 N_{design} Table

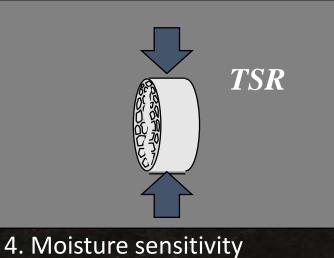

Traffic Level	Compaction Level			
Million ESALs	N _{initial}	N _{design}	N _{maximum}	
< 0.3	6	50	75	
0.3 to < 3.0	7	75	115	
3.0 to < 30.0	8	100	160	
> 30.0	9	125	205	

Note: Most states use different N_{design} levels






4 Steps of Superpave Mix Design


1. Materials selection

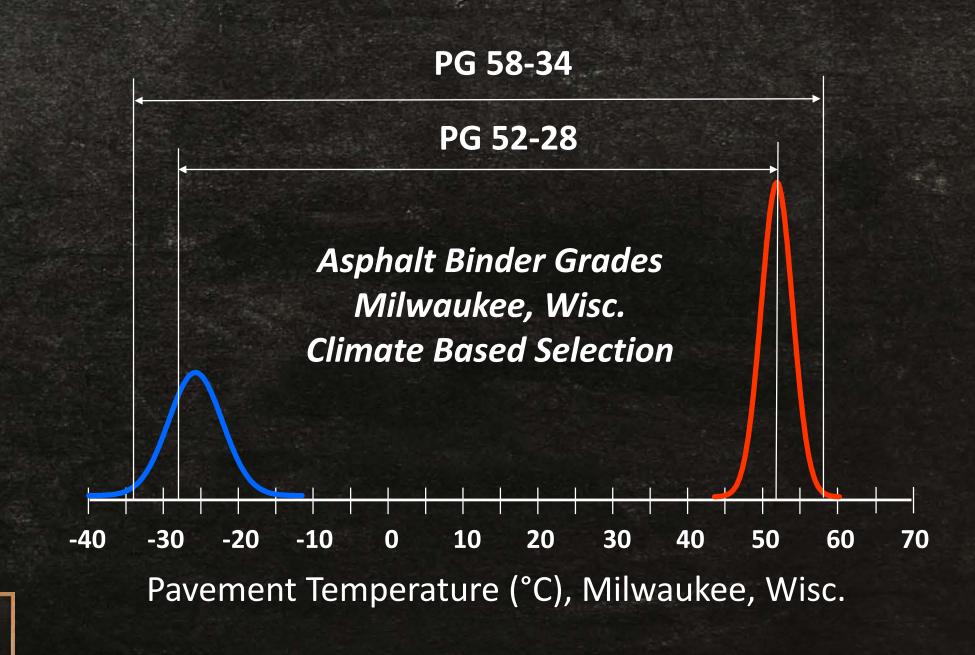
2. Design aggregate structure

Webinars

Step 1: Materials Selection

- Binder selection
 - The binder grade is specified in nearly all cases
 - Selecting binder *supplier* usually based on cost
- Aggregates selection
 - Must comply with specified criteria
 - Choice of aggregates usually limited to locally available materials
 - NMAS is typically selected based on layer thickness

Example Project


Project on I-43
Milwaukee, Wisconsin
18,000,000 ESAL Design
Asphalt overlay - 120 mm total thickness

40 mm - wearing course (12.5 mm NMAS)
80 mm - intermediate course (19.0 mm NMAS)

Example mix design

Binder Selection: Milwaukee, Wisc.

PG 52-28 PG 58-34

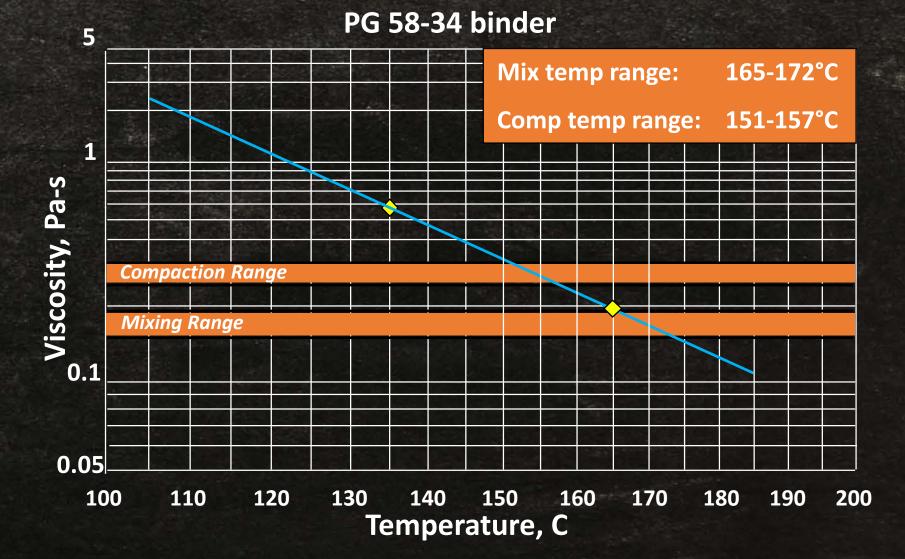
Reliability (%) 50 74.5 99.9 99.6

Selected PG 58-34

http://www.tfhrc.gov/pavement/ltpp/ltppbind.htm

Adjusting the virgin binder grade

Increase the high PG by one grade when:
traffic speed is slow e.g. between 20 and 70 km/h (12 to 43 mph))


Increase the high PG by two grades when:
traffic speed is standing (e.g. less than 20 km/h (12 mph))

Decrease the high and low PG by one grade when:
RAP content is more than 25 percent (RAP binder ratio > 0.25)

Mixing and Compaction Temperatures

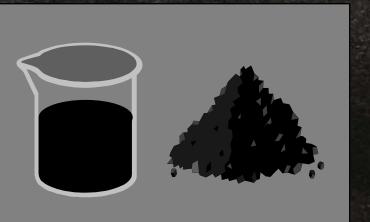
webinars

- HOL

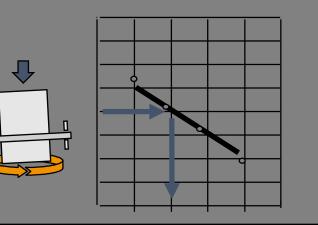
10 m

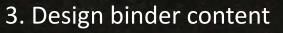
Available Aggregates

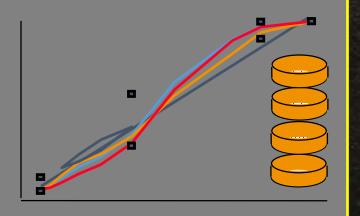
-77

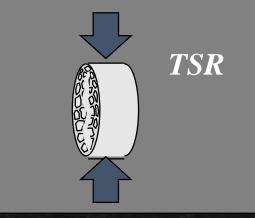

Available stockpiles

- #56
- #67
- #8
- #10
- Natural sand






4 Steps of Superpave Mix Design


1. Materials selection

2. Design aggregate structure

4. Moisture sensitivity

Step 2: Design the Aggregate Structure

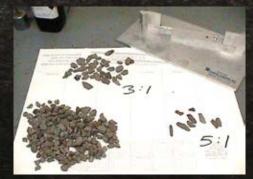
• Establish trial blends

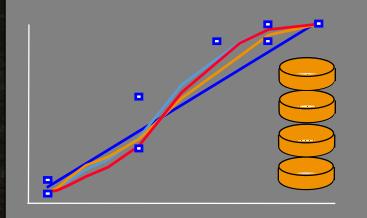
• Check aggregate consensus properties

Compact specimens

• Evaluate volumetric properties of trial blends

• Select design aggregate structure




Consensus Aggregate Properties

See criteria in AASHTO M 323

Consensus Aggregate Requirements

Fracture FacesCoarse Agg.Min. %DesignDepth from Surface		Uncomp. Voids Fine Agg. Min. % Depth from Surface		Sand	Flat &	
EASLs Millions	≤ 100 mm	> 100 mm	≤ 100 mm	> 100 mm	Equiv. Min. %	Elong. Max. %
< 0.3	55/-	-/-		- 100 mm	40	_
0.3 to <3	, 75/–	, 50/—	40	40	40	10
3 to <10	85/80	60/-	45	40	45	10
10 to <30	95/90	80/75	45	40	45	10
≥30	100/100	100/100	45	45	50	10
	c 1					

one face/two faces

All consensus aggregate requirements apply to the blend, not the individual components.

See M323 for other notes

Example Coarse Agg. Angularity

TEST RESULTS

Aggregate	1+ Frac Faces	Criterion	2+ Frac Faces	Criterion
#56	92%		88%	
#67	97%	95% min	94%	90% min
#8	99%		95%	

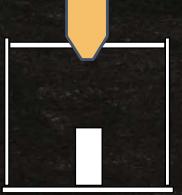
ASTM D 5821 Determining the Percentage of Fractured Particles in Coarse Aggregate

Example Flat & Elongated Particles

TEST RESULTS

Aggregate	%Flat & Elongated	Criterion
#56	0%	
#67	0%	10% max
#8	0%	

ASTM D 4791 Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate



Example Fine Aggregate Angularity

TEST RESULTS

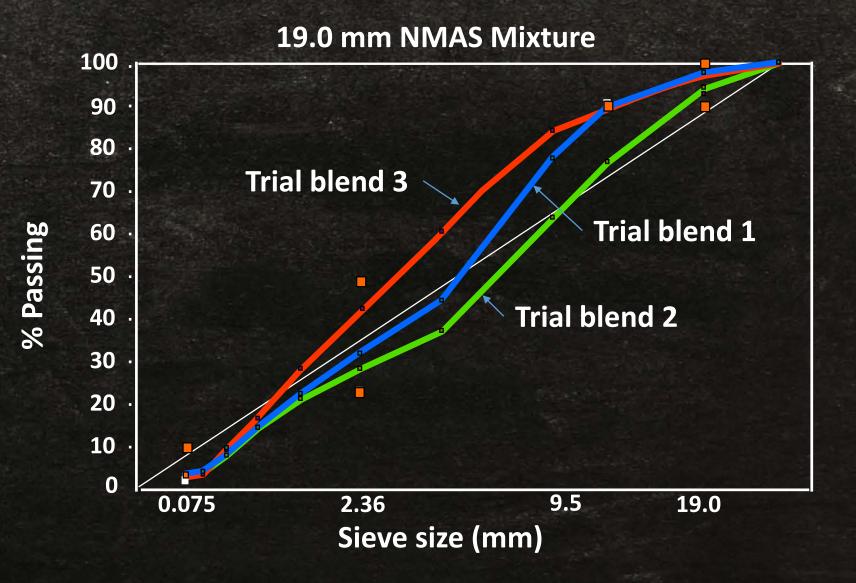
Aggregate	%Uncomp. Voids	Criterion
#10	48%	45% min
Natural sand	43%	

AASHTO T 304 Uncompacted Void Content of Fine Aggregate

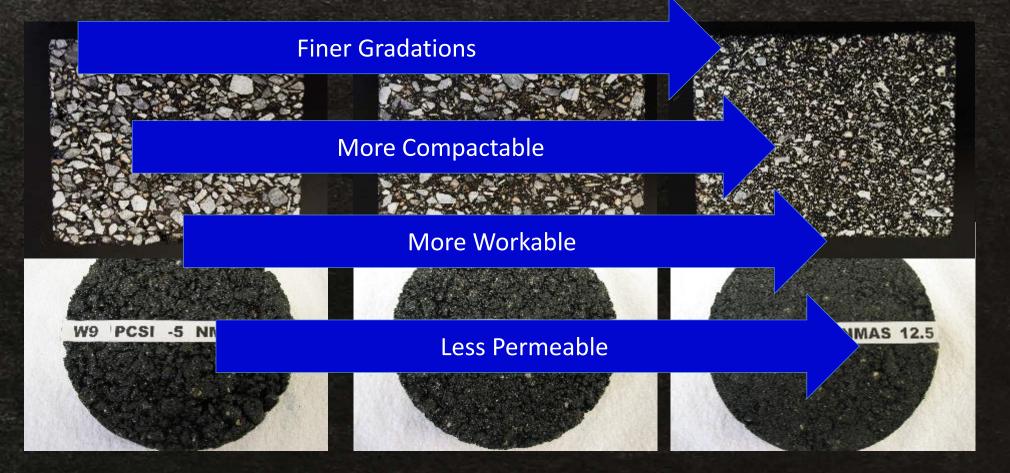
Example Sand Equivalent

TEST RESULTS

Aggregate	Sand Equivalent	Criterion
#10	47	45 min
Nat. sand	70	
AASHTO T 176 Plastic Fir and Soils by Use of the S	nes in Graded Aggregates and Equivalent Test	


Example Trial Blends

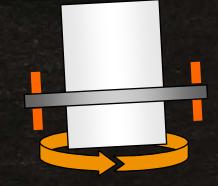
	Trial blend 1	Trial blend 2	Trial blend 3
#56	25%	30%	10%
#67	15%	20%	15%
#8	17%	13%	20%
#10	18%	10%	26%
Nat. sand	10%	12%	14%
RAP	15%	15%	15%


I-43 Trial Blend Gradations

Choosing a Gradation

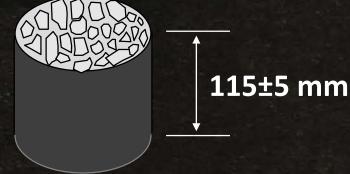
Aggregate Consensus Properties

BLENDED AGGREGATE PROPERTIES ARE DETERMINED


Property	Criteria	Blend 1	Blend 2	Blend 3
Coarse Ang.	95%/90% min.	96%/92%	95%/92%	97%/93%
Fine Ang.	45% min.	46%	46%	48%
Flat/Elongated	10% max.	0%	0%	0%
Sand Equiv.	45 min.	59	58	54
Combined G _{sb}	n/a	2.699	2.697	2.701
Combined G _{sa}	n/a	2.768	2.769	2.767

Compact Specimens (Trial Blends)

- Establish a trial asphalt binder content
- Establish trial aggregate weights
- Batch, mix, and compact specimens
- Determine N_{ini} and N_{des}
- Calculate mixture properties

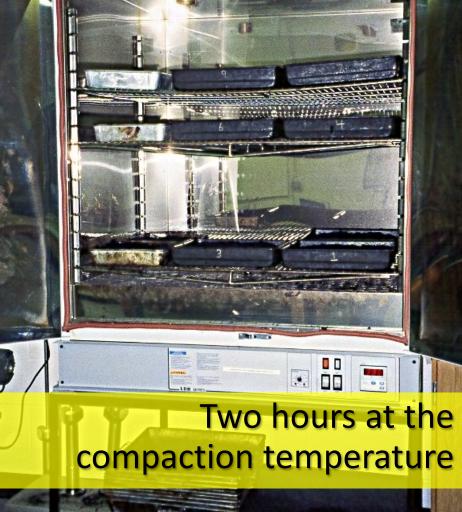

Specimen Preparation

- Specimen height

 Compacted N_{des} specimens: 115±5 mm (~4700 g)

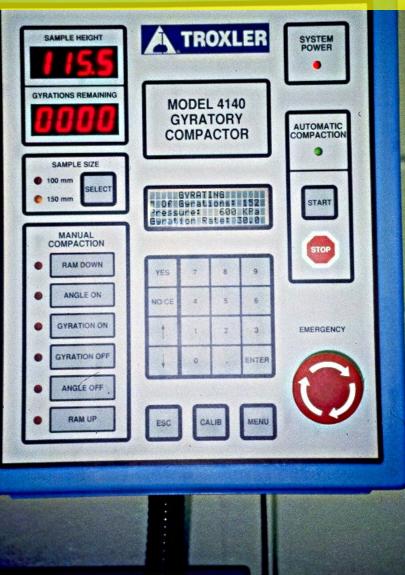
 Loose specimen for G_{mm} (Rice)

 Varies with nominal max size
 19.0 mm (2500 g)
 - 12.5 mm (1500 g)


Batching Samples of Trial Blends

Mix Conditioning

Care Tunny and



G GRIEVE

Back Basics

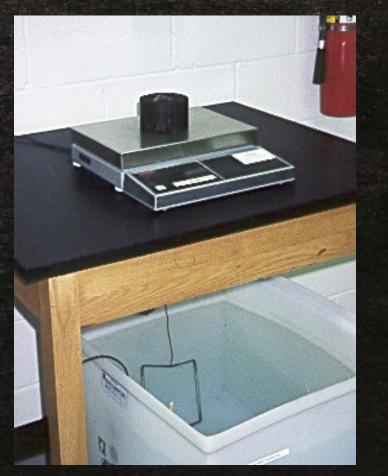
Set SGC to Design Number of Gyrations

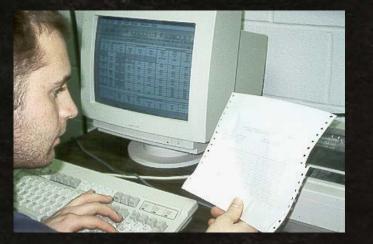
Current AASHTO N_{design} Table

Traffic Level	Compaction Level			
Million ESALs	N _{initial}	N _{design}	N _{maximum}	
< 0.3	6	50	75	
0.3 to < 3.0	7	75	115	
3.0 to < 30.0	8	100	160	
> 30.0	9	125	205	

Note: Most states use different N_{design} levels

Compact samples, then extrude immediately


Remove paper immediately and label samples



Measure G_{mb}, G_{mm} and Calculate Volumetric Properties

Superpave Mixture Requirements

- Mixture volumetric properties
 - Air voids
 - Voids in the mineral aggregate (VMA)
 - Voids filled with asphalt (VFA)
- Dust to Binder Ratio
- %G_{mm} @ N_{ini}

Air Voids (V_a)

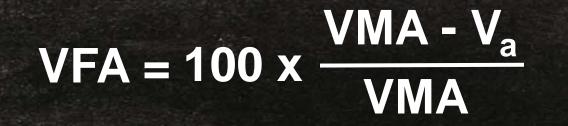
Calculated using bulk specific gravity (G_{mb}) and maximum specific gravity (G_{mm}) of the mix

Air voids (V_a) = 100 x
$$\left[\frac{G_{mm} - G_{mb}}{G_{mm}}\right]$$

 $%Gmm = 100 - V_a$

Voids in Mineral Aggregate (VMA)

$$VMA = 100 - \frac{G_{mb} (1-P_b)}{G_{sb}}$$


 $VMA = V_a + V_{be}$

Vbe = volume of effective binder It is the most important parameter to ensure mix durability

Voids Filled with Asphalt

VFA is the percentage of VMA that is filled with asphalt binder

If Va is fixed at 4.0% and a min. VMA is given, then and the min. VFA is redundant

Calculation of %G_{mm} @ N_{ini}

To calculate the %Gmm @ Nini, you need the %Gmm @ Ndes and the heights from the SGC at Ndes and Ninitial

 $\%G_{mm} \oslash N_{ini} = (\%G_{mm} \oslash N_{des}) \times \frac{Ht. \oslash N_{ini}}{Ht. \oslash N_{des}}$

Superpave Volumetric Criteria AASHTO M323

Traffic Million		Compac % of G _{mm}	ompaction of G _{mm}		VFA	Dust to Binder
ESALs	N _{ini}	N _{des}	N _{max}	(%)	(%)	Ratio
< 0.3	≤ 91.5			see	70-80	
< 3	≤ 90.5 = 96.0 ≤98.0 ne	= 96.0 ≤98.0	next	65-78	0.6 to 1.2	
> 3	≤ 89.5			slide	65-75	

Nmax is not evaluated for the trial blends. It is checked later.

See M323 Table 6 for footnotes.

Superpave VMA Requirements

VOIDS IN THE MINERAL AGGREGATE		
Nominal Max Size (mm)	Minimum VMA %	
4.75	16.0	
9.5	15.0	
12.5	14.0	
19.0	13.0	
25.0	12.0	
37.5	11.0	

Some agencies set higher VMA criteria

Trial Blend Results

Property123Trial binder content4.4%4.4%4.4% $\%G_{mm} @ N_{des}$ 96.2%95.7%95.2% $\%G_{mm} @ N_{ini}$ 87.1%85.6%86.3%

%Air voids3.8%4.3%4.8%%VMA12.7%13.0%13.5%%VFA68.5%69.2%70.1%Dust/Binder Ratio0.90.80.9

Estimating P_b to get 4.0% V_a for the Trial Blends

Determine the difference in avg. air void content at N_{des} (ΔVa) for each trial blend from the target of 4.0%: $\Delta Va = 4.0 - Va$

Example (Blend 1) $\Delta Va = 4.0 - 3.8 = 0.2\%$

Estimate the change in binder content (ΔPb) needed to change the air void content to 4.0%:

 $\Delta Pb = -0.4 \times \Delta Va$

Example (Blend 1) $\Delta Pb = -0.4 \times 0.2\% = -0.08\%$

Adjusting the VMA

Estimate the change in VMA $\Delta VMA = 0.2 \times \Delta Va \quad if Va_{trial} > 4.0$ $\Delta VMA = -0.1 \times \Delta Va \quad if Va_{trial} < 4.0$

 $VMA_{est} = VMA_{trial} + \Delta VMA$

Example (Blend 1) $\Delta VMA = -0.1 \times 0.2 = -0.02\%$ $VMA_{est} = 12.7\% + (-0.02\%) = 12.7\%$

Adjusting %G_{mm}@N_{ini}

Estimate the change in %Gmm@Nini %Gmm@Nini_{est} = %Gmm@Nini_{trial} – ΔVa

Example (Blend 1) %Gmm@Nini_{est} = 87.1% – 0.2% = 86.9%

Adjusting Dust to Binder Ratio

Estimate the change in DP $Pbe_{est} = Pbe_{trial} + \Delta Pb$

 $D/B Ratio_{est} = P_{0.075} / Pbe_{est}$

Example (Blend 1) $Pbe_{est} = 4.4\% + (-0.08\%) = 4.3\%$

 $D/B Ratio_{est} = P_{0.075} / Pbe_{est} = 3.9/4.3\% = 0.9$

Compare Adjusted Trial Blend Results to Mixture Criteria

 Property
 1
 2
 3
 Criteria

 Trial binder content
 4.3%
 4.5%
 4.7%

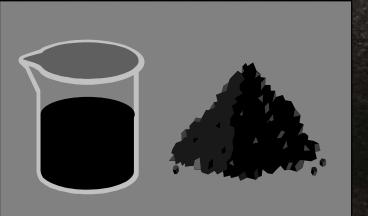
 %G_{mm} @ N_{ini}
 86.9%
 85.9%
 87.1%
 < 89%</td>

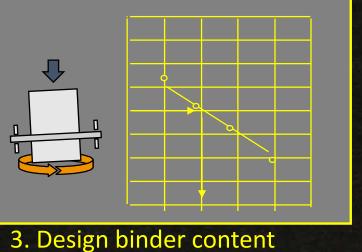
%Air voids 4.0% 4.0% 4.0% 4.0% %VMA 12.7% 13.0% 13.3% $\geq 13.0\%$ 69.2% 70.1% 68.5% %VFA 65-75% **Dust/Binder Ratio** 0.9 0.9 0.8 0.6-1.2

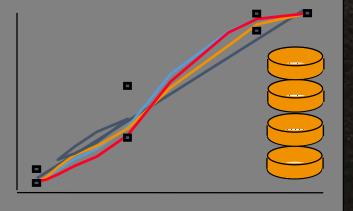
Select the Design Aggregate Structure

- What if none of the trial blends are acceptable?
 - Recombine existing aggregates to form additional blends (i.e., blend 4, blend 5, etc.)
 - Add one or more new aggregate materials and make new blends
 - Repeat step 2 of the process

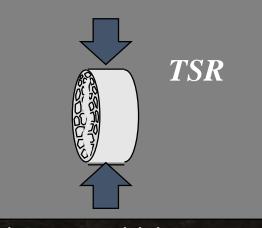
I-43 Trial Blend Gradations


19.0 mm NMAS Mixture 100 90 80 70 **Trial blend 4** 60 50 40 30 20 10 0 0.075 2.36 9.5 19.0 Sieve size (mm)




% Passing

4 Steps of Superpave Mix Design



1. Materials selection

2. Design aggregate structure

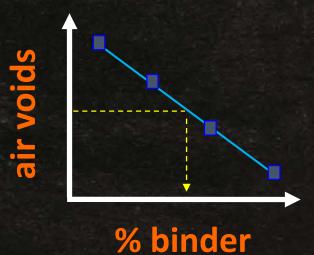
4. Moisture sensitivity

Step 3: Design Binder Content

- The selected trial blend becomes the design aggregate structure
- Batch, mix, and compact more samples with this gradation with four asphalt contents
- Determine volumetric properties
- Select Pb at 4.0% air voids and check other volumetric properties
- Compact an additional set to N_{max} for check

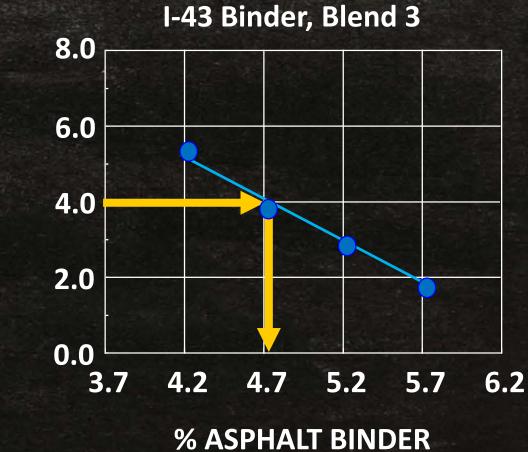
Design Binder Content Samples

Binder content	4.2%	4.7%	5.2%	5.7%
%G _{mm} @ N _{ini}	85.7%	87.1%	87.4%	88.6%
%G _{mm} @ N _{des}	94.6%	96.1%	97.1%	98.2%


%Air voids	5.4%	3.9%	2.9%	1.8%
%VMA	13.3%	13.1%	13.3%	13.5%
%VFA	59.4%	70.2%	78.2%	86.7%
Dust/Binder Ratio	o 1.0	0.9	0.8	0.7

Mix Air Voids Requirement

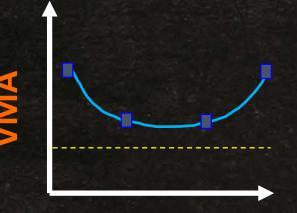
4.0 % at N_{des} Regardless of the Traffic Level



Some agencies target lower air void contents for some or all mixes

Air Voids: Example Mix Design

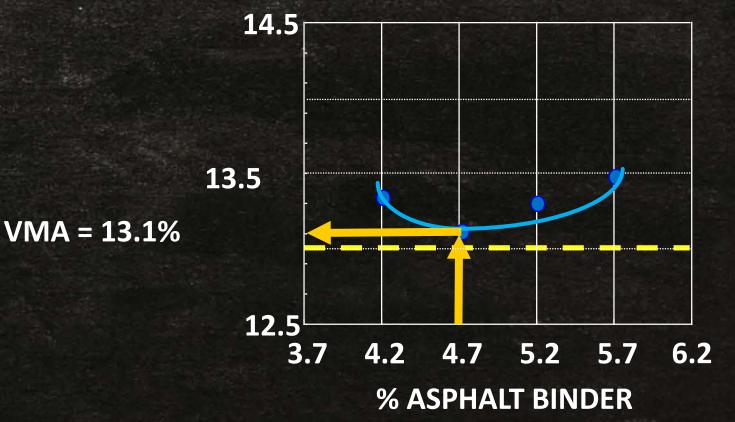
Air Voids = 4.0 %



alle -

Mix VMA Requirements Voids in the Mineral Aggregate

Minimum VMA %	
16.0	
15.0	
14.0	
13.0	
12.0	
11.0	
	% 16.0 15.0 14.0 13.0 12.0


% binder

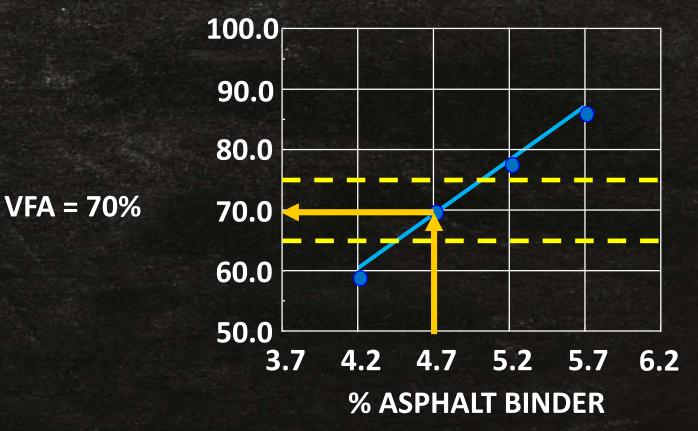
VMA: Example Mix Design

I-43 Binder, Blend 3

1000

Mix VFA Requirement Voids Filled with Asphalt

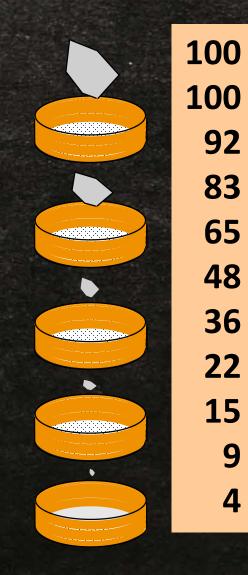
Traffic 10 ⁶ ESALs	Range of VFA %	4	
< 0.3	70 - 80	VFA	
0.3 to ≤ 3	65 - 78		
> 3	65 - 75		% hindor



% DINGEI

VFA: Example Mix Design

I-43 Binder, Blend 3



1000

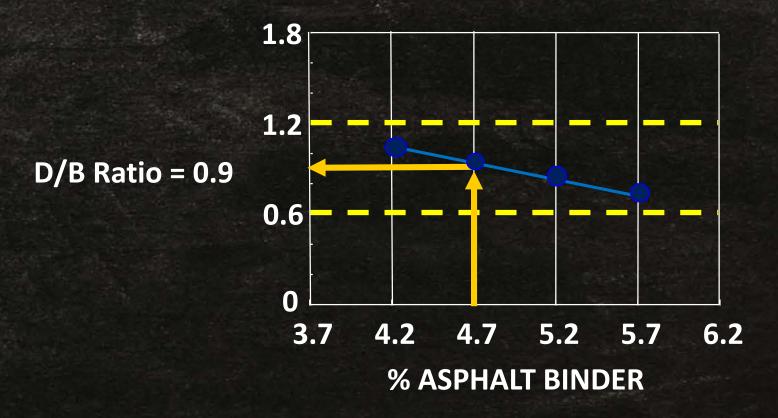
10 m

Criteria for Dust/Binder Ratio

Back

Basics

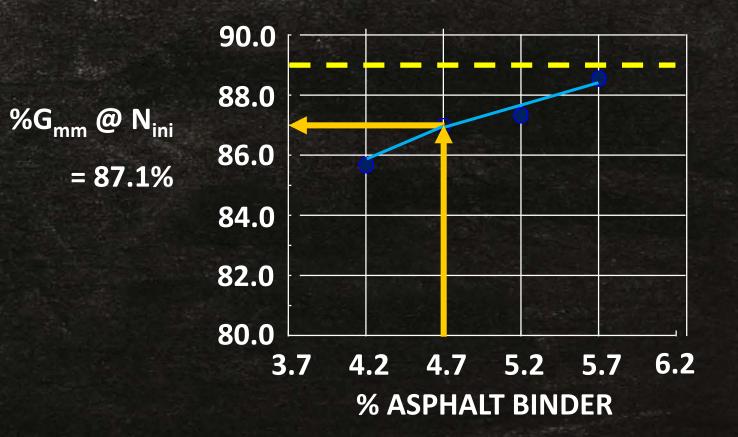
% mass of - 0.075 material $0.6 \leq \frac{1.2}{\%}$ mass of *effective* asphalt


Unabsorbed binder in mix

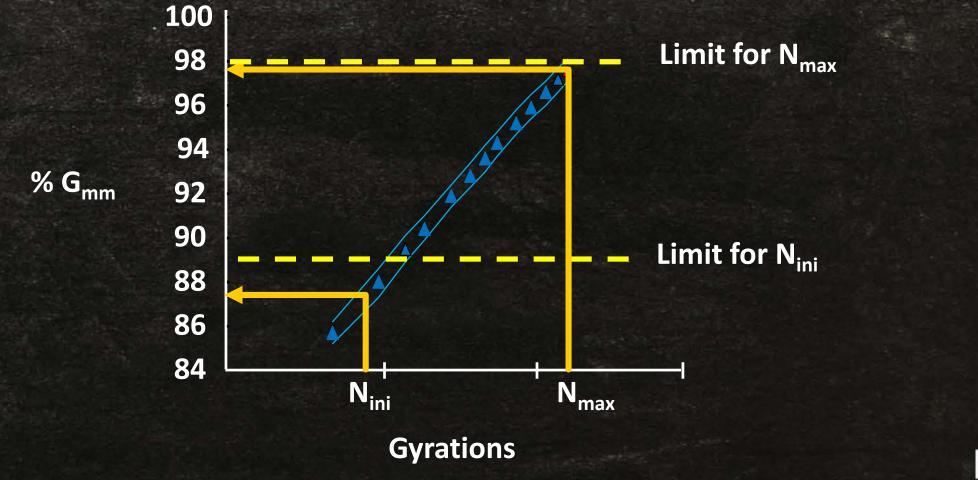
See M323 Table 6 for exceptions

Dust/Binder Ratio: Example Mix Design

I-43 Binder, Blend 3



and the second

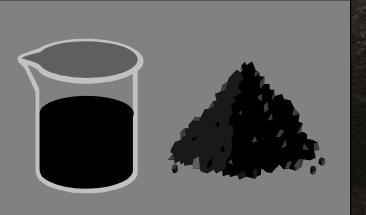

I-43 Binder, Blend 3

Back Basics

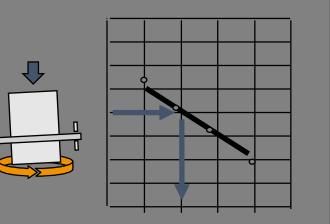
Mixture Compaction Checks

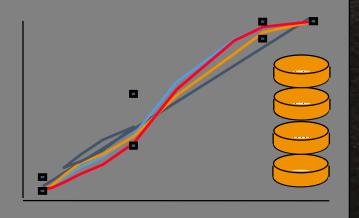
and the

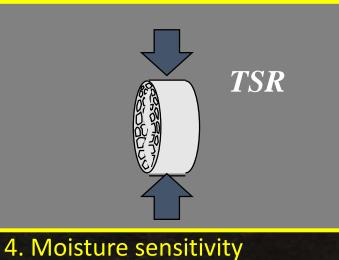
Select Design Asphalt Binder Content


SUMMARY OF MIXTURE PROPERTIES @ 4.7% AC

Property	Result	Criteria
%Air voids	4.0%	4.0%
%VMA	13.1%	<u>></u> 13.0%
%VFA	70%	65-75%
D/A ratio	0.9	0.6-1.2
%G _{mm} @ N _{ini}	87.1%	<89%
%G _{mm} @ N _{max}	97.5%	<98%




4 Steps of Superpave Mix Design


1. Materials selection

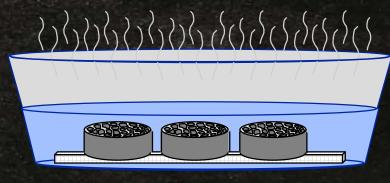
3. Design binder content

2. Design aggregate structure

Webinars

Definition

Moisture susceptibility: loss of adhesion between the aggregate surface and the asphalt binder in the presence of water



Step 4: Moisture Sensitivity AASHTO T 283

Conducted on the proposed mix design

Three Conditioned Specimens

Three Dry Specimens

Tensile Strength Ratio

80 %

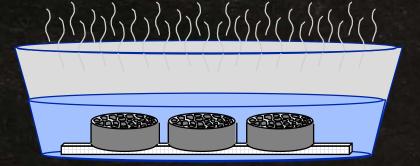
minimum

AASHTO T 283 Conditioning

Conditioning

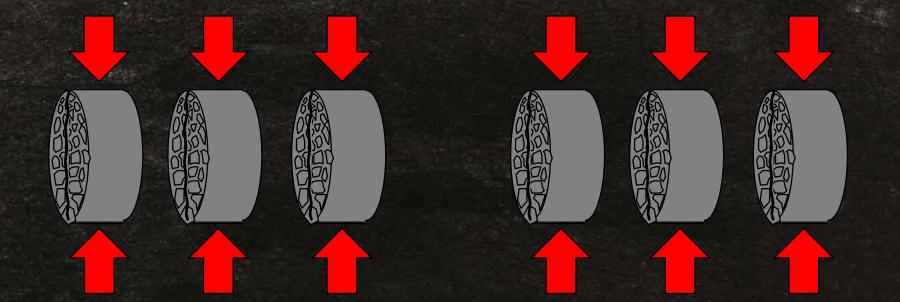
- After mixing, cool to room temp. for 2 hrs.
- Condition loose mix 16 hrs @ 60°C
- Compact specimens, then set aside for 24 hrs @ 25°C
- Two subsets with equal voids
 - Unconditioned (dry) subset
 - Conditioned subset

70 to 80 % saturation



AASHTO T 283 Conditioning

Freeze-thaw cycle
 16 hours @ -18°C


24 hour hot water soak
24 hours @ 60°C

AASHTO T 283 Test Procedure 50 mm / min @ 25°C

Average dry tensile strengthAverage wet tensile strength $TSR = \frac{wet}{dry}$ ≥ 0.80

Calculate TSR

 $TSR = \frac{Wet Strength}{Dry Strength}$

TSR = $\frac{721 \text{ kPa}}{872 \text{ kPa}} = 0.83$

Criterion is 0.80 minimum.

The mix design exceeds the minimum requirement

Final Asphalt Mix Design --Job Mix Formula--

Aggregate grad	ation:
25 mm	100%
19.0 mm	97%
12.5 mm	89%
9.5 mm	77%
4.75 mm	44%
2.36 mm	32%
1.18 mm	22%
0.6 mm	15%
0.3 mm	8%
0.15 mm	5%
0.075 mm	3.9%

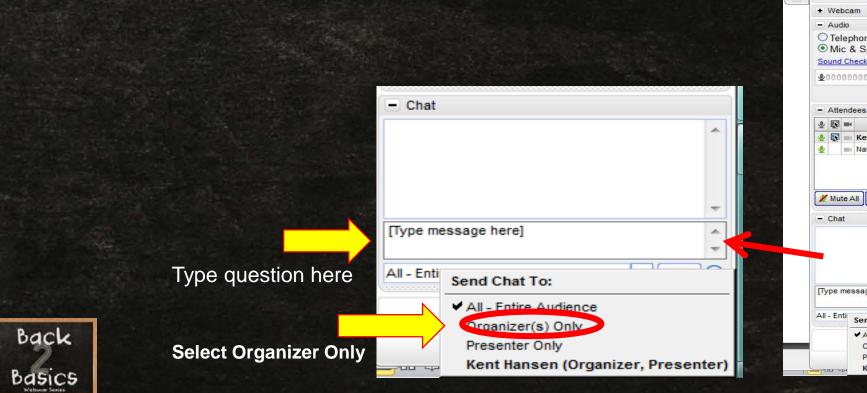
Aggregate	Blend:
10%	#56 stone
15%	#67 stone
20%	#8 stone
26%	#10 mfg. sand
14%	Nat. Sand
15%	RAP

Asphalt binder: 4.7% PG 58-34

Back Basics

Mix Design verification during Production

- Mixtures must be verified from plant samples to ensure the mix properties are within the given specification limits.
- Differences in lab prepared mix design and plant produced mix should be expected.
- Take care so that adjustments don't result in a poor quality mix


Thank you!

Questions?

and the

