Welcome

Tim Kowalski Application Support Manager Wirtgen America Inc.

140

Outline

- **Compaction Basics**
 - What is compaction?
 - Why do we compact?
- 4 Elements of compaction
- Roller Train
 - Varies with specifications and location
- Roller types
- Roller design specs affecting compaction
- **External factors affecting compaction**
- **What affects roller patterns**
- Summary

Why do we need compaction?

Why Compaction?

To build support foundations

Hydro power dams

Airport runways

Building pads

Roads & streets

Soil Material

The most important Characteristics of soil are:

- High load-bearing capacity
- Good stability
- Low water permeability
- Extremely level
- Grading curve
- Layer thickness

Asphalt Material

Most important parameters are:

- Mix type
- Particle size distribution curve
- **Binder type and proportion**
- Environmental conditions when paving
 - Temp, wind, overcast or sunny
- Course thickness

Why Compaction?

Why Compaction?

To build and rehabilitate roads

Improve material stability
 Minimize permanent deformation / rutting
 Improve fatigue resistance / cracking
 Reduce moisture penetration & breakouts

Typical damage patterns and their sources of error

Ruts are caused by:

- Over-compaction due to insufficient voids in the compacted asphalt body, the mix cannot "contract" or "relax" due to the traffic load. This results in plastic deformation and no visco-elastic deformation.
- Under-compaction there is an insufficiently interlocked grain structure! This is compressed by traffic over time.
- Defective mix

Settlements are caused by:

- Insufficiently load-bearing soil that is compacted locally under the traffic load (weak point in the subsoil)
- Penetrating water (e.g. burst pipe) that penetrates into the road body and flushes out the subgrade

Binder enrichment (bleeding) results from:

- Too high binder content in asphalt mix
- **Too much bitumen emulsion (tack)**
- Incorrect use of the dynamic
 compaction binder is pulled to the surface
 by vibration compaction
- Too Intensive use of pneumatic tire rollers
- Over-compaction bitumen is drawn to the surface by "ironing"
- Mix that is too hot

HAMM

Outbreaks are caused by:

- Faulty mix formulation adhesive effect between the grain structure is not sufficient
- **Frost damage** through penetrating water
- **Dynamic compaction on cold** asphalt
- **Insufficient bond between layers**

Longitudinal and transverse cracks are caused by:

- Deformation settlements
- Frost damage In dew periods, heavy vehicles can destroy the road surface by destroying frostbite
- Incorrectly made seams
- Matigue
- Low-temperature behaviour of the asphalt
- **Error during paving:**
 - Too much dynamic compaction
 - Roller too heavy
 - Rolling start too early
 - Pan formation

Pavement Distresses

Wave formation by the paver

- Wrong screed setting
- Mix (temperature, material flow, ratio grain size / paving thickness)
- Uneven substructure
- Wrong sensors on the paver
- Insufficient pre-compaction of the screed
- ☑ No constant speed

Wave formation through the roller

- ☑ Rolling over the bow wave (speed)
- ☑ No steering in front of the paver
- Strong steering movements on hot mix
- ☑ Wrong frequency / amplitude / speed of the roller

Who's Job is Compaction?

Compaction is a sequence of STEPS in order to <u>MANIPULATE</u>

aggregates & REDUCE the voids between them.

Reduces voids Increases friction

Water content to Low

Optimum water content

Water content to high

Sample at 95% density

<u>95% DENSITY</u> means that we still have <u>5% AIR VOIDS</u> left in the compacted layer

Asphalt is a FLEXIBLE product. Too much rigidity would not be desirable.

How is compaction measured?

In the laboratory

Producing test samples of the designed mix (Gyratory or Marshall) Measuring the forces to break the test samples in a press

Provides the maximum theoretical density level attainable of the material (100% density)

How is compaction measured?

On Site Portable units measure the density

These units give a good indication of density and assist the QC in establishing a rolling pattern

How is compaction measured?

In the laboratory using core samples to analyze its quality

Provides the EXACT density level of the compacted core sample

What Are The Four **Elements to Achieve Compaction?**

The Four Elements can be Summarized as ...

Impacts

Static Weight Dynamics (Vibration) (Oscillation) Kneading (Oscillation)

Static Weight

Applies a static pressure from <u>TOP</u> to <u>BOTTOM</u> (Surface compaction)

Kneading effect

Matches contours of an uneven surface Minimizes bridging and helps to identify soft spots

Applies a static pressure from TOP to BOTTOM (DEEPER surface compaction than a static drum) Seals the mat by bringing fines to the surface.

Ideal tire pressure is dependent upon ballasted weight of the machine

Kneading

Tire pressure too high

Kneading

Air pressure too low:

The rubber wheels are deflected inwards. This causes the contact area of the rubber wheels in the drive direction to be very large, but the compaction effect is reduced because there is almost no compaction effect in the middle of the tyre.

Tire pressure too low

PTR's provide a very effective form of compaction within a tender-zone on Superpave mixes

Tire Pressure Chart

CA and GCP for **Dunlop Tires**

Dunlop Tires 11.00 R 20

Inflation pressure [psi]		43,5	58,0	72,5	87,0	101,5	116,0				
Wheel load [lbs]	Ground Contact Pressures and Contact Areas*									
0750	CA	74	62	52	46	42	39				
2750	GCP	37	44	53	60	66	71				
3300	CA	86	72	62	55	49	46				
	GCP	38	46	53	60	67	72				
4400	CA	109	92	81	71	64	59				
	GCP	41	48	54	62	68	74				
5500	CA	127	108	95	85	77	71				
	GCP	43	51	58	65	72	77				
0000	CA	146	124	110	99	89	83				
	GCP	45	53	60	67	74	79				
7700	CA	162	137	123	111	101	94				
	GCP	48	56	63	70	76	82				

CA = Ground Contact Area [in²]

GCP = Ground Contact Pressure [lbs/in²]

Four Elements?

Four Elements?

Oscillation (Drum has 100% ground contact) "Non-Aggressive compaction" Vibration (Drum is 50% in the air) "Aggressive compaction³

Compaction system

Four Elements?

Vibration Vertical aggregate positioning Oscillation Horizontal aggregate positioning

The Roller Train

Roller Train?

A "roller train" can be summarized as...

A sequence of rollers following the asphalt paver Each working the mat at a fixed distance range from the paver The objective is to achieve required density & provide a quality mat finish

	Breakdown	Intermediate	Finish
			6500000
Delivered density: 75 - 80%	Approx. 90-91%	Approx. 91-93%	Approx. 93-94%
Distance	Up to 200 ft	Up to 200 ft	150 ft & more

Roller Train?

Roller trains are flexible...

The "roller train" can be a mix of any compactor types & sizes The main goal is to adapt to the asphalt mix design, jobsite conditions using equipment available in order to achieve required density & mat finish requirements in the least number of passes

Pneumatic (rubber tires)

Element(s) involved:Static weight, kneading, proof rollingApplication(s):Seal mat surface (All)

Track overlapping

Front and rear axle offset Track overlapping The track overlap is also guaranteed when cornering

Separating compound for rubber wheels

When <u>diesel</u> is used as a separating compound, the rubber becomes soft. This forces the rock into the tyre material. Therefore only use the correct separating compound!

HAMM

Combination (steel drum & rubber tires)

Element(s) involved: Application(s): Weight, kneading, dynamics

Municipal jobs, steep grades, etc... (Versatile unit for smaller jobs)

Tandem steel drums (vibration)

Element(s) involved:Weight, dynamics (vibration F & R)Application(s):Breakdown and Intermediate, finish in static mode

Tandem steel drums (OZZY)

Element(s) involved:

Weight, dynamics (vibration F & oscillation R)

Application(s):

All roller train positions (Extended rolling time, no crushing, smoothness, joints)

Tandem rollers

(pivot-steered)

(articulated)

Steering types

Pivot-steered drums

allow both drums to be steered separately from each other

Articulated rollers have a pivot in the middle of the frame This allows the frame to "buckle"

Split roller drum

Splitting the drum can reduce the lateral sliding by half

Same size drum halves with one drive motor each

- $\ensuremath{\overline{\mathsf{M}}}$ ASC reduces the speed of the inner drum when cornering
- Less material displacement and cracks

Key Roller Design Specifications Affecting Compaction

Key roller design specifications affecting compaction

Amplitude

Vibration - different amplitudes

Comparison of amplitudes

Small amplitude

Speed can kill

Centrifugal force principle

Centrifugal forces are generated by eccentrics in rotation Heavier the eccentric weight – greater the generated force Faster the eccentric rotation – greater the generated force

Drum

Centrifugal Force is Calculated by:

Multiplying the <u>Amplitude</u> times the Un-sprung <u>Drum Weight</u>, times <u>Frequency</u> squared divided by 35,198.

Makes you wonder!

Frequency + forward speed = (impact spacing)

The animation will show the relation between Eccentric frequency – roller travel speed – impact spacing

(12 impacts / linear foot)

For the **SAME** eccentric rotation of **3200 vpm**, if I <u>ACCELERATE</u> to 4.0mph the <u>IMPACT SPACING</u> will now <u>INCREASE</u> to ...

"<u>WARNING</u>"

Best practices

dictate that you should <u>REDUCE</u> your rolling speed <u>NEVER TO INCREASE</u> impact spacing over 1.2"

Or

NOT TO GO LOWER than 12 impacts / linear foot

Optimal 12 impacts / linear foot)

Frequency & Rolling Speed

Frequency & Rolling Speed

	MPH	1	2	2.5	3	3.5	4	5	6
	VPM								
	1,500	17	8.5	6.8	5.7	4.8	4.3	3.4	3.8
	1,600	18.2	9.0	7.2	6.0	5.1	4.5	3.6	3.0
	1,700	19.3	9.6	7.7	6.4	5.5	4.8	3.7	3.2
	1,800	20.4	10.2	8.2	6.8	5.8	5.1	4.1	3.4
	1,900	21.6	10.8	8.6	7.2	6.2	5.4	4.3	3.6
	2,000	22.7	11.4	9.1	7.6	6.5	5.7	4.5	3.8
	2,100	23.9	11.9	9.6	8.0	6.8	6.0	4.8	4.0
	2,200	25.0	12.5	10.0	8.3	7.1	6.3	5.0	4.2
	2,400	27.3	13	0.9	9	East	6.8	5.5	4.6
	2,500	28.4	14	1.4	9	Fast	7.1	5.7	4.7
	2,700	30.7	15.3	12.3	10.2	8.8	7.7	6.1	5.1
	2,800	31.8	15.9	127	10.6	91	80	64	53
Standard -	→ 3,000	34.1	17.0	13.6	11.4	9.7	8.5	6.8	5.7
	3,300	37.5	18.8	15.0	12 -	107		75	6.3
	3,500	39.8	19.9	15.9	13	X 4	TO F	ast 📗	6.6
	3,600	40.9	20.5	16.4	13 b	7	102	82	68
	3,800	43.2	21.6	17.3	14.4	12.3	10.8	8.6	7.2
n Freg. 🛛 —	4,000	45.5	22.7	18.2	15.2	13.0	11.4	9.1	7.6
i i cqi	4,200	47.7	23.9	19.1	15.9	13.6	11.9	9.6	8.0

Frequency & Rolling Speed

WIRIGEN	H	AMM	7		A HOUR	G SPEED (MPH) TO MPACTS	ACHIEVE	
		IMPACTS PER LINEAR FOOT						
HERTZ	VPM	10	11	12	13	14	15	
40	2400	2.7	2.5	2.3	2.1	1.9	1.8	
41	2460	2.8	2.5	2.3	2.2	2.0	1.9	
42	2520	2.9	2.6	2.4	2.2	2.0	1.9	
43	2580	2.9	2.7	2.4	2.3	2.1	2.0	
44	2640	3.0	2.7	2.5	2.3	2.1	2.0	
45	2700	3.1	2.8	2.6	2.4	22	2.0	
46	2760	3.1	2.9	2.6	2.4	2.2	2.1	
47	2820	3.2	2.9	2.7	2.5	2.3	2.1	
48	2880	3.3	3.0	2.7	2.5	2.3	2.2	
49	2940	3.3	3.0	2.8	2.6	2.4	2.2	
50	3000	3.4	3.1	2.8	2.6	2.4	2.3	
51	3060	3.5	3.2	2.9	2.7	2.5	2.3	
52	3120	3.5	3.2	3.0	2.7	2.5	2.4	
53	3180	3.6	3.3	3.0	2.8	2.6	2.4	
54	3240	3.7	3.3	3.1	2.8	2.6	2.5	
55	3300	3.8	3.4	3.1	2.9	2.7	2.5	
56	3360	3.8	3.5	3.2	2.9	2.7	2.5	
57	3420	3.9	3.5	3.2	3.0	2.8	2.6	
58	3480	4.0	3.6	3.3	3.0	2.8	2.6	
59	3540	4.0	3.7	3.4	3.1	2.9	2.7	
60	3600	4.1	3.7	3.4	3.1	2.9	2.7	
61	3660	4.2	3.8	3.5	3.2	3.0	2.8	
62	3720	4.2	3.8	3.5	3.3	3.0	2.8	
63	3780	4.3	3.9	3.6	3.3	3.1	2.9	
64	3840	4.4	4.0	3.6	3.4	3.1	2.9	
65	3900	4.4	4.0	3.7	3.4	3.2	2.9	
66	3960	4.5	4.1	3.8	3.5	3.2	3.0	
67	4020	4.6	4.1	3.8	3.5	3.3	3.0	
68	4080	4.6	4.2	3.9	3.6	3.3	3.1	
69	4140	4.7	4.3	3.9	3.6	3.4	3.1	
70	4200	4.8	4.3	4.0	3.7	3.4	3.2	

"<u>WARNING</u>"

"<u>RIPPLE</u>" problems can be generated by large impact spacing...

The problem may be WORSE with THICK asphalt layers

Rolling Speed Example

4 impacts per foot

- Creates rough ride or could even create sound issues
- Watch your speed

High frequency compaction rollers

POSITIVE ASPECTS

Allows for HIGHER travel SPEED Allows for MORE roller mat COVERAGE (sq. ft / min) Theoretically allows for MORE productivity Good for "THIN LIFTS"

- **V** Quick sealing of mat surface behind paver
- Could increase rolling time before tender zone occurs

Larger drum diameters ...

Provide for more UNIFORM mat contact Are LESS prone to mat marking Are LESS prone to bow waves

The effects may be MORE visible on THICK asphalt layers

Drum Water & Scrapers

Pressurized water system

High pressure water system ensures full coverage to drum surface.

Drum Water & Scrapers

Dual scrapers per drum

External Factors Affecting Compaction

External Factors?

Don't go blaming the roller...

Fact is, it's rarely the rollers fault!

External Factors Affecting Compaction:

- Mix design
- Mix temperature
- **Paver issues**
- **Operator Issues**
- Ambient temperature
- **Base Conditions**

Mix Design

A science of its own

The main components can be summarized as follows:

Minimum mat thickness vs aggregate size

"CONVENTIONAL" Asphalt Mix Design

Largest aggregate size in the mix

Rule

Minimum Mat Thickness

Minimum mat thickness vs aggregate size

"SUPERPAVE" Asphalt Mix Design

Minimum mat thickness vs aggregate size

"CONVENTIONAL"

"SUPERPAVE"

"Grain Crushing" may occur

"White" crushed gravel surface

Gradation Curve

Sieve Size

Good to keep a log

Roller operators have NO control of the mix delivered

It is therefore a good practice to;

- **o Identify the mix you are working on**
- Keep a log for future reference (see example...)

Contrar gas	198 2 24	- F - 5
a see a see	Start Sale	
Autorite	all all	
ALC: AS ALL		
A Starte		3 1 17 33 C
	Tis ind.	The second second
AND THE	1 1 10 10 10	
and the second		TOX 2 the
143-	Los Aler	a data AN
Contract of the second se		
1. 1. S. S. S.	10 300 10	

Da	ate	Worksite	Mix type	Mat Temp.	Weather	Rolling Pattern	Achieved Density	Target Density	Mat thickness

KNOWLEDGE & EXPERIENCE is priceless!!

Temperature

Hot mix & ambient temperature

Higher temp.

- Bitumen is more fluid
- Bitumen is lubricating
- (Good for compaction)

Temperature (Proper Machine)

Temperature

Cooling rate = rolling time

HaveCool 3.0	N							
File Options Help	3							
🗋 🗲 🖬 🍰 💀 ?								
Project Title								
Start Date/Time	Mix Specifications	Mix Tom	ereture °E					
7/14/2016 - 10:18 AM	Mix Type		erature, °F					
Set to Current Time	Fine/Dense 🔻	320				Cooling C		
Environmental Conditions	Binder Grade PG 58 ▼ -34 ▼	300				Start Rolli Stop Rolli		
Air Temperature 50 °F	PG 58 ▼ -34 ▼ Lift Thickness	280						
Wind Speed 5 mph	3.00 🚔 in.	260						
Sky 🔛 Humid & Hazy 🔻	Delivery Temperature	4						
Latitude 45 °	275 🚖 °F	240						
Existing Surface		220	\mathbf{X}					
Material Type 🏼 🎆 Granul	ar Base 🔻	200						
Material Condition Dry -	Unfrozen 🔹							
Surface Temperature 50	°F Calculate	180						
Recommended Times		160						
Start Rolling 4	minutes after laydown	140						
Stop Rolling 47	minutes after laydown	0	20	40	60	80	100	120
Disclaimer	Export Data			Ti	me, minute	S		
		<u> </u>						

Cooling rate = rolling time

MultiCool V2.0

Can run from Computer

Android & iPhone App

Software has been developed to estimate the temperature window for rolling time

Hot mix & ambient temperature

Temperature ranges can dictate the "roller train" set up

Hot mix & ambient temperature

Cooling rate affected by...

Mat lift thickness

- Market Ambient & base temperature
- **Asphalt mix lay down temperature**
- Wind velocity

Temperature

Monitoring system

Constant temperature readout

Display & warning controller

Infrared temperature sensor

Monitoring system

Operator can set the temperature parameters

300°F

Temp. high:

Grading and base compaction is critical

Compacted surface is only as good as its BASE Grading and surface uniformity is critical Base reconstruction or milling may be necessary

Deformation

Cracking

Base Conditions

Preparation is critical

Deformation

Base Conditions (Preparation is Critical)

Recycling

"Fine milling" for near perfect re-profiling before paving

Base Conditions (Preparation is Critical)

- Do a walk around, look for obstacles or anything out of the ordinary
- **Check water system, clean filter**
- **Check function of lights, indicators and beacon**
- **Check fluid levels**
- Check scrapers, make sure they are in the correct position
- Mail Allow for the equipment to warm up

Know your equipment!

Deactivate vibration before reversing

- Choose the amplitude and frequency to match the job and the mix
- Compact surface course at low amplitude / high frequency
- Compact thick layers of more than 3" on high amplitude first, then switch to low
- **On hills, only vibrate up hill and static down**
- On asphalt temperatures under 175, only use static or oscillation

- 1) Roll as closely as possible behind the paver
- 2) When compacting, always begin at the lower edge
- 3) Compact the seams first (if next to a hot mat)
- 4) Deactivate vibration before reversing
- 5) Always change the rolling speed gently
- 6) Move forwards and backwards in the same track
- 7) Change the roller track on the cold side
- 8) Roll in parallel tracks
- 9) Water the drums sufficiently
- **10)** Never leave the roller on the hot asphalt

And Three More...

After Finishing

Key Factors Affecting Rolling Patterns

Key factors affecting pattern

Basic rolling techniques Paver speed Number of passes Number of coverage's

Joints & edges

Basic rolling techniques

Never STOP on a soft mat Never VIBRATE standing still

Basic rolling techniques

Basic rolling techniques

Rolling Pattern (Stopping)

Basic rolling techniques

Always stop at an angle

Basic rolling techniques

Always stop at an angle

- I pass = 1 way <u>up</u> towards the paver
- **2** passes = 1 way <u>up</u> and 1 way <u>down</u> on the mat in the same track
- Patterns need to be maintained for consistency
- Each rolling train zone has its own pattern
- **Number of passes will always be an odd number**

Coverage = Number of passes to cover the mat once Number of coverages needed to achieve final density

In this example 2 passes are needed to make 1 coverage

Rolling Pattern (Longitudinal Joint – Vibration)

Rolling Pattern (Longitudinal Joint – Oscillation)

Compaction of the seam in the fan shape

Reversing before the paver

Rolling Pattern (Transverse Joint)

Summary

- **©** Compaction starts from the bottom up
- **4** elements of compaction
 - Static weight, Impacts, Dynamics and Kneading
- **Roller Trains**
- **Roller types**
 - Where and when to use
- **Roller Deign Specs**
 - Impact spacing
 - **Water & Scrapper system**
- External Factors
 - Mix Designs (vary)
 - Temperature, Temperature, Temperature
- **Rolling Techniques**
 - Stop on angle
 - **Smooth transitions**

Thank You

121