

WISCNSIN AUTOMATED VEHICLE PROVING GROUNDS

PETER RAFFERTY

WISCONSIN AUTOMATED VEHICLE PROVING GROUNDS wiscav.org

Building a Smart Madison for Shared Prosperity

Ą

513

6

-

IOT

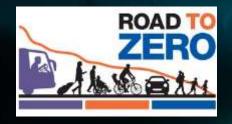
Shared

V2X

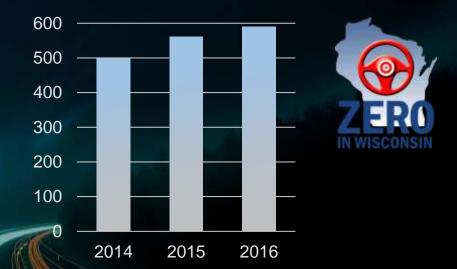
Trends and Outcomes

Mobility

• Electric


- Shared
- Connected
- Automated

Safety Vehicle Miles Traveled (VMT) Sprawl Parking Energy Air Quality Public Health Equity Accessibility


Traffic Fatalities Rising

Nationally:

- Increased for 2nd straight year
- Largest two-year increase in 50 years
- Approaching 40,000 deaths

Wisconsin:

 Pedestrian deaths now up to 15% of all traffic fatalities

Motivations and Opportunities

Safety

- ~90% of crashes attributable to human error
- Approaching 40,000 deaths
- Distracted driving continues to worsen
- Need to carefully navigate the era of partial automation
- Equity
 - Accessibility
 - First mile / last mile

- Many other motivations:
 - Economic development, startup and tech jobs
 - Underutilized vehicles
 - Efficient use of infrastructure and land
 - Health care, agriculture, and other sectors

How AVs Operate

CONTROLLER

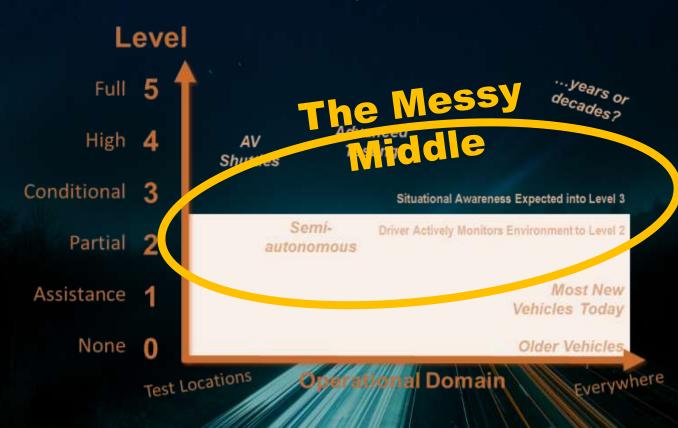
- LIDAR SENSOR
- 칮 GPS UNIT
- ONBOARD BASEMAP

Cameras gather visual information from the road and traffic control and send them to the controller for processing. LIDAR LIDAR LIDAR sensors bounce lasers off of detected objects. LiDAR can

detect road lines and assets

and differentiate objects.

RADAR Radar sensors bounce radio waves off detected objects. Radar cannot differentiate objects.



GPS UNIT The GPS unit identifies the precise position of the vehicle and aids in navigation.

SAE Levels of Automation

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Huma	n driver monite	ors the driving environment				
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Ruman driver	Human driver	n/a
1	Driver Assistance	the <i>driving mode-specific</i> execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the <i>human driver</i> perform all remaining aspects of the <i>dynamic driving task</i>	Human driver and system	Human-driver	Human driver	Some driving modes
2	Partial Automation	the <i>driving mode</i> -specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the <i>human</i> <i>driver</i> perform all remaining aspects of the <i>dynamic driving</i> <i>task</i>	System	Human driver	Human driver	Some driving modes
Auton	nated driving s	ystem ("system") monitors the driving environment				
3	Conditional Automation	the <i>driving mode-specific</i> performance by an <i>automated</i> <i>driving system</i> of all aspects of the dynamic driving task with the expectation that the <i>human driver</i> will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the <i>driving mode-specific</i> performance by an automated driving system of all aspects of the <i>dynamic driving</i> task, even if a <i>human driver</i> does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

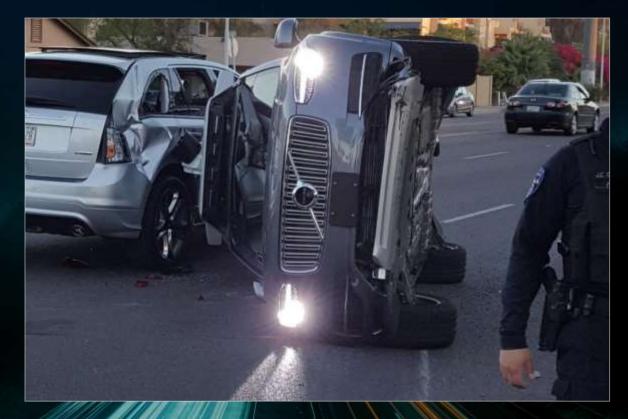
Levels Depend on Circumstances

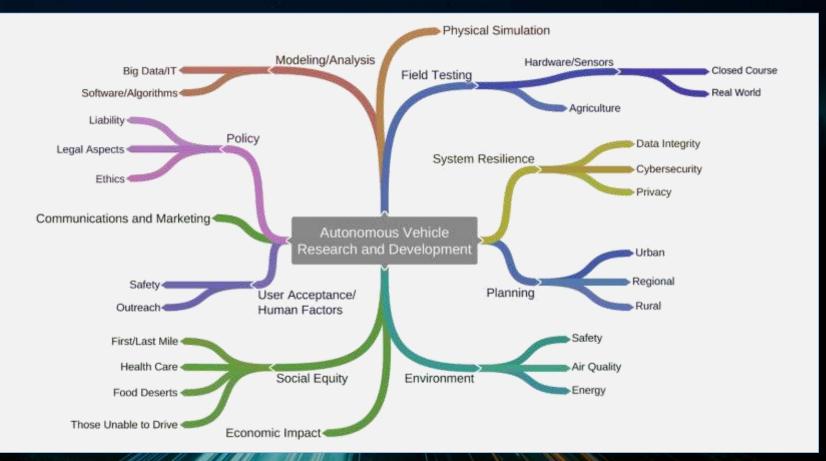
Critical implications:

- Human operator expectations, "re-engagement"
- Where certain vehicles can safely operate

Tesla Florida May 2016

TEKET


Tesla, March 2017


June 17, 2017 Destroyer Fitzgerald and ACX Crystal

Uber, March 2017

Breadth, Complexity, Edge Cases

The Road to Autonomous through Advanced Driver-Assistance Systems (ADAS)

Driver alert systems
Forward collision warning / automated braking
Adaptive cruise control
Lane keeping / departure warning
Automated lighting
Automatic parking
Traffic warnings
Smartphone/GPS connectivity
V2V systems
V2I/V2X systems

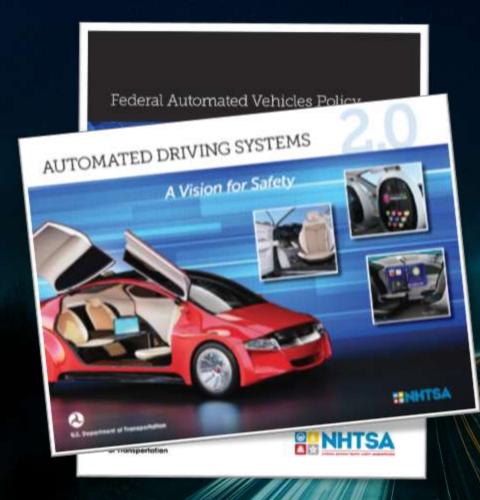
Back-Up Camera Shows you a view behind your car when backing up

Automatic Emergency Braking System May brake for you if a front-end crash is imminent

MyCarDoesWhat org

A website that answers all your questions about new car safety technologies.

Blind Spot Monitor Helps you know what cars might be hidden to your left or right



IPI

Lane Departure & Lane Keeping Systems Warns you if you're drifting out of your lane and may steer you back

Automatic Parallel Parking Helps you safely navigate into a parallel spot. You control braking, it controls steering

...and so much more

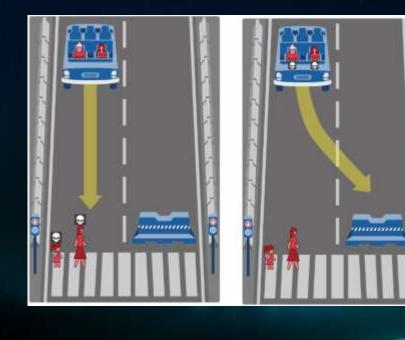
Federal AV Policy

- Released Sep 20, 2016
- Updated Sep 12, 2017
- Voluntary guidelines
 - Not regulations
- Level 3+ Only
- 12 Safety Elements
- Guidance for State Policy

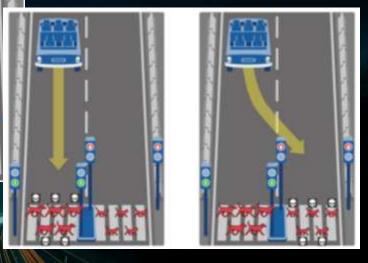
NHTSA's 15 12 Safety Elements

- 1. System Safety
- 2. Operational Design Domain
- Object and Event Detection and Response
- 4. Fall Back (Minimal Risk Condition)
- 5. Validation Methods

- 6. Human Machine Interface
- 7. Vehicle Cybersecurity
- 8. Crashworthiness
- 9. Post-Crash ADS Behavior


10. Data Recording and

11. Consumer Education and Training
12. Federal, State and Local Laws


13. Privacy

14. Registration and Certification

15.Ethical Considerations

15. Ethical Considerations

moralmachine.mit.edu

USDOT AV Proving Grounds

WISCONSIN AV PROVING GROUNDS

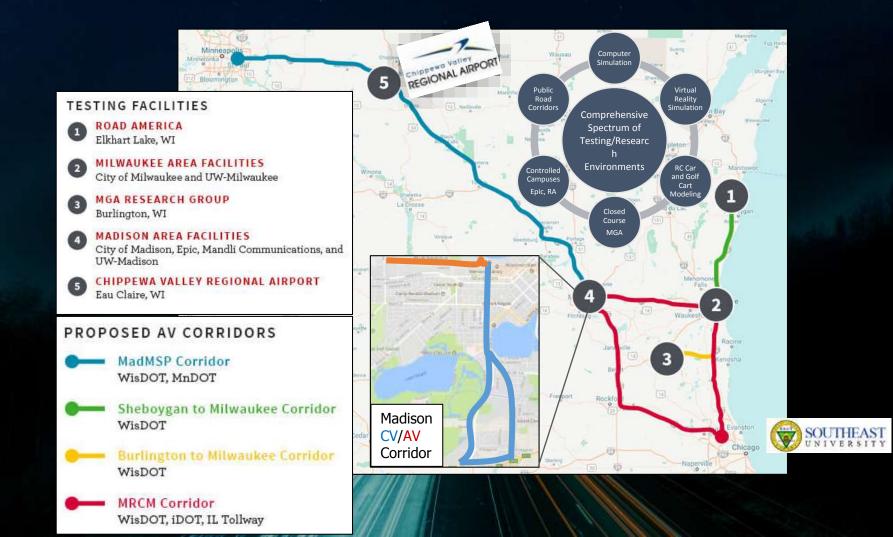
Proposal for USDOT Designation of Automated Vehicle Proving Grounds Pilot

Burgeroller after

ingo research corporation

ge of Engineering

- Peer network
- Advise government
- Validate industry
- Awarded January 2017

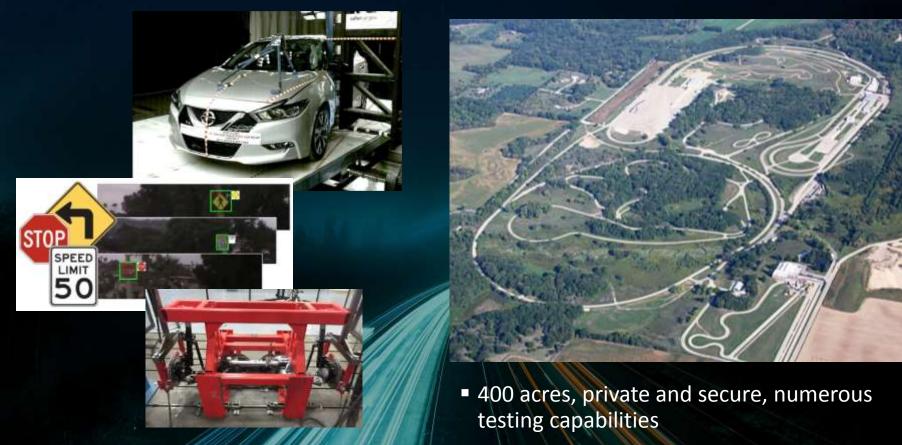

...no funding

Ten Designated AV Proving Grounds

Range of RDT&E Environments

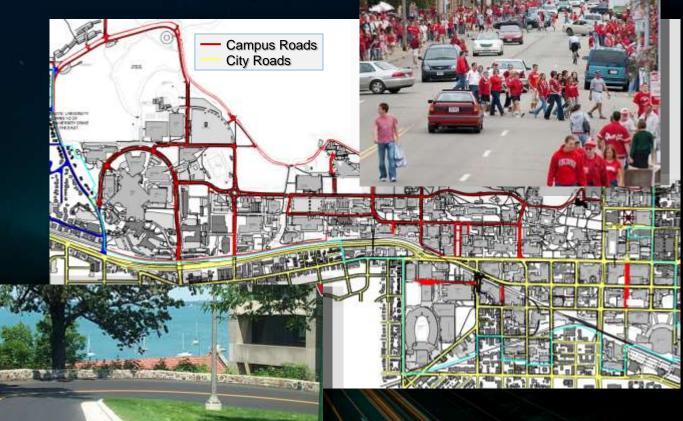
					WEST MERSING 90
Simulation	Lab	Closed Track	Controlled Demo	Limited Facility	Public Roads

Wisconsin Facilities UW-Madison College of Engineering



Wisconsin Facilities MGA Research, Burlington

Wisconsin Facilities Road America, Elkhart Lake



- Road track: 4.05-mile length, 30-foot width
- 1-mile combo paved-dirt track
- 12+ miles off-road
- 10+ miles access roads
- Major race events and media presence

Wisconsin Facilities

Campuses

- Corporate
 Campuses
- UW-Madison Campus
- City of Madison

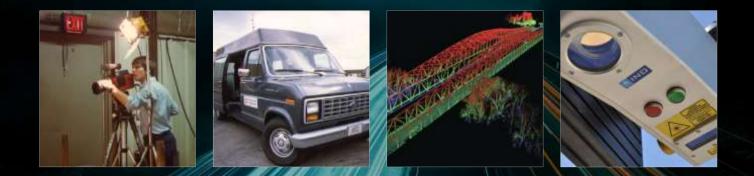
Wisconsin Facilities Connected Park Street Corridor

- Piloting CV technology to improve:
 - Safety
 - Mobility
 - Bus on-time performance
 - Equity
- V2I, V2V, V2X
- Madison and Wisconsin as the Upper Midwest hub for CV & AV development

Governor's Committee on Automated and Connected Vehicles

- May 2017 EO #245
- Sept 2017 Kickoff
- June 2018 Report Due
- Members:
 - Government: WisDOT, WSP, WEDC, Assembly, Senate, Iowa Co Sheriff, Insurance Commissioner
 - Academic/Nonprofit: UW-Madison, Tech Council, ABATE
 - Industry: MGA, Roadview, Waymo, Uber, Tesla, AAM, Global Automakers, Dealers Assn, Harley, Schneider, HNTB

STEVE CAYA PRESIDENT, ROADVIEW roadview.com


Transportation in an Automated Vehicle Wor

Steve Caya - President of Roadview, Inc.

- Member of Governor's Steering Committee on Autonomous Vehicles (AV)
- Member of the Wisconsin AV Proving Grounds
- Board Member of Geospatial Transportation Information Management Association (GTiMA)
- UW-Madison Detachment 925 Air Force ROTC Alumni Captain, United States Air Force

About Roadview

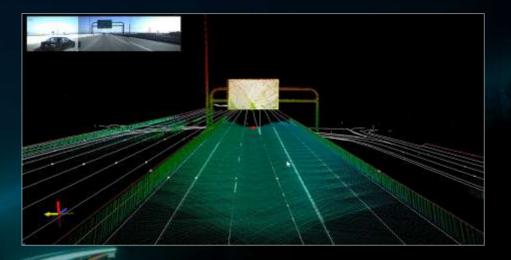
- A dedicated geospatial data collection, processing, and delivery company
- Based in Fitchburg, WI
- Worked with over 30 State DOTs
- First pavement collection in 2002
- 35 years experience in the Transportation industry

Technology

- Lidar
- Positional Systems
- Imaging
- LCMS Laser Crack Measurement System
- Software for data extraction and visualization

Thousands of Miles Collected

Technology


Imaging

Roadview's 2D imaging system is capable of recording high-resolution images in a variety of weather, speed, and lighting conditions. The operator can monitor all images being collected by the system in real-time. Each camera runs at a resolution up to 3296×2472 pixels and captures at a selectable rate of 100 to 500 frames per mile, with vehicle speeds ranging up to 65 mph during collection.

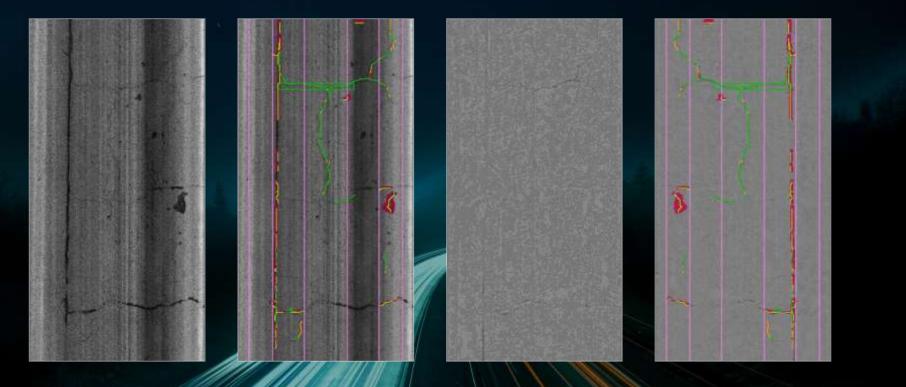
Lidar

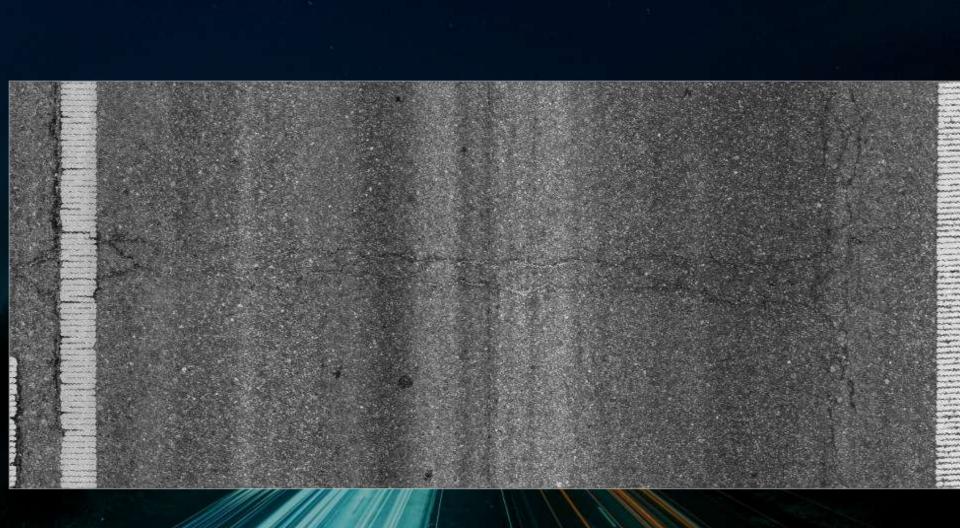
Mandli's LiDAR data collection system creates an accurate three-dimensional model of a scanned environment in a single pass of our collection vehicle. The system collects up to 1.4 million points of data per second at highway speeds, at ranges exceeding 100 meters. The point cloud produced by the system can be utilized to take 3D measurements of roadside assets, including width, height, and length, surpassing the measurement capabilities of 2D images.

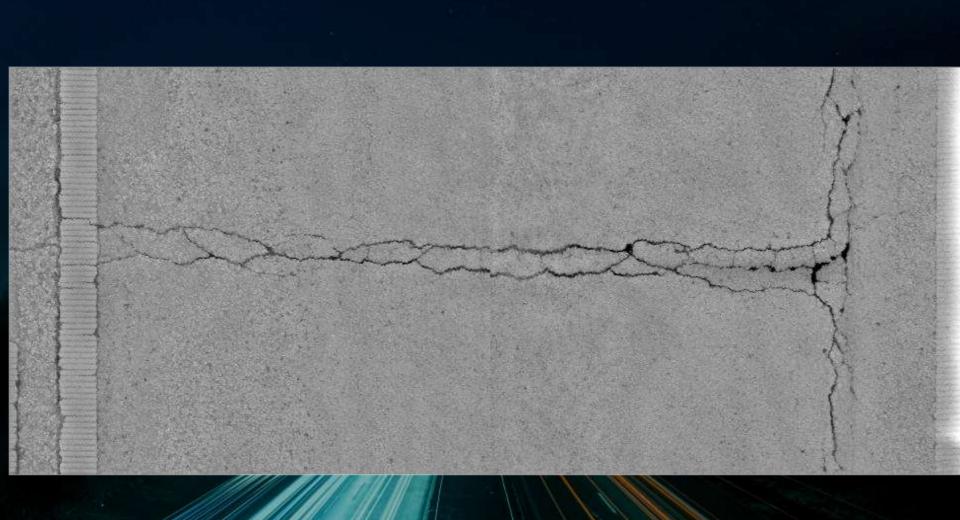
Collection System

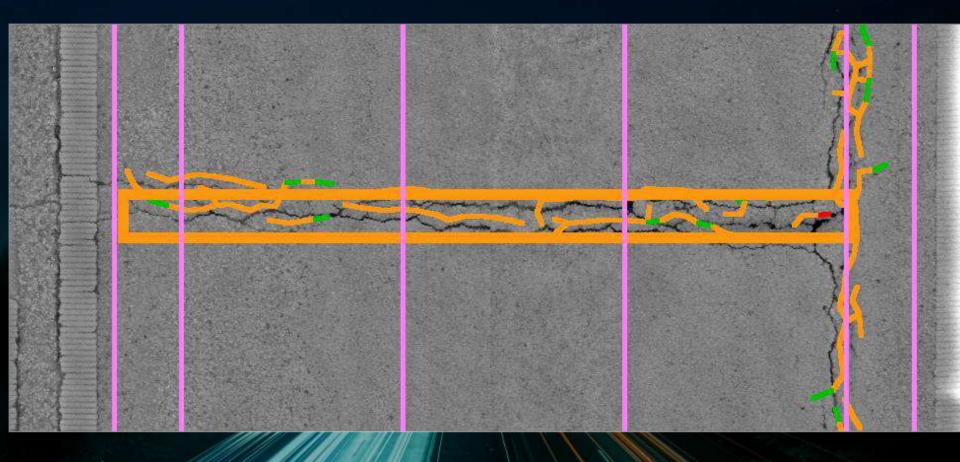
HDL-32E

Spatially Accurate Maps






LCMS


https://www.youtube.com/watch?time_continue=68&v=j_oW2q7jkjE

Assets Collected

Data Examples

	10.00		_	C.H.	Inst Peri	_	41	_	_	Andrea Pre-	12	_	_	_				 _	- 15	1001.25	
Barte	_						_							_		Partial Inst	Training of the		-	STREET, ST	
0.04, - 0.04, - 0.04, - 0.04, - <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>nd C</th> <th></th> <th>asib</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>										nd C		asib									
hann hann (te	111 •	and Jonas a	9. Lai (ka	875 862	100 100 100 100 100 100				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						- 1						
del Culture per del Culture per Verse Lan Car Janaces Tapi Car Janaces Par Car Janaces Par Car Jang Lan Car Jang Mai				6				1 · ·	-	J		1.00		I.C	D			UN-			

Roadways in a Automated world

- Smaller and More Efficient ROWs: AVs' unique navigation capabilities are expected to enable narrower traffic lanes, reduce the number of lanes needed to accommodate traffic demand, and remove the need for medians.
- A Drop-Off Revolution: AVs are expected to create demand for drop areas that are as close as possible to the entrances of destinations.
- Signage & Signalization: The future will not have large numbers of traffic signs and signals, as traffic information can be transmitted to AVs wirelessly in real-time.
- Parking: AVs will bring massive changes to the location, form, and amount of parking, as AVs can park themselves or remain in the transportation network while awaiting their next rider.

Smaller and More Efficient Right-of-ways

- AVs have the potential to travel more precisely than human operated vehicles and in harmony with other AVs.
- Reduced Lane Widths: Lanes are designed to account for driver wander and human error. If lanes were designed to the width of a AV the lane width could be reduced by as much as 20%.
- Fewer Traffic Lanes / Reduced Lane Expansion: AVs will be able to safely travel closer together than human-operated vehicles. This will significantly increase the throughput of each vehicle lane.
 - 25% of congestion is caused by traffic incidents, since 93% of crashes are caused by human error there should a significant reduction in congestion

Smaller and More Efficient Right-of-ways

 Smaller Medians: The primary purpose of medians today is to provide a safety buffer between two lanes of traffic heading in opposite directions. If AVs become reliable, as promised, the need for medians may be kept for aesthetic value only.

Figure 2.3 - 2060: Because AVs need less wide lanes and no medians to travel safely, this space can be freed up for more pedestrian and bicycle infrastructure

Drive Lane

Drive Lane

Dropoff Lane

Dike Lars

Sidewa

Drifve Lane

Drive Lane

Sidewalk

Blke Larse

Dropoff Lane

Figure 2.4 - 2060 2: Alternatively, in some places, AVs increased efficiency may allow for the removal of one travel lane, which can open up space for dropoff lanes and significantly wider pedestrian and bicycle infrastructure

Dropoff Lane

Blke Lane

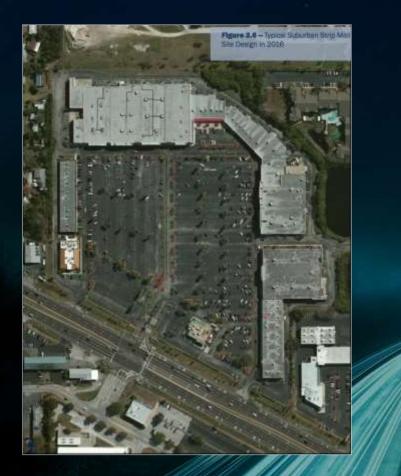
Drive Lane

12

Sidewall

Dropoff Lane

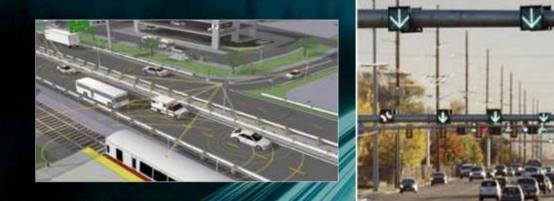
Drive Lane

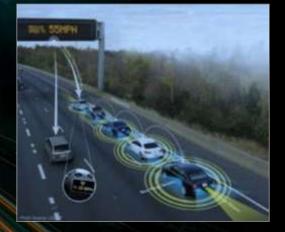

12

Sidewall

Access Management

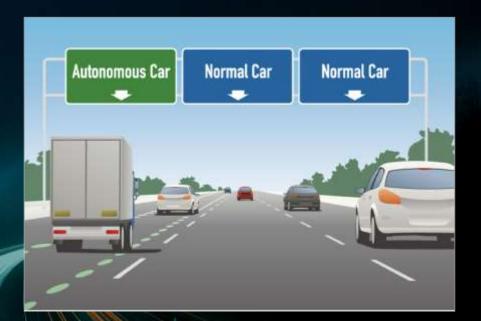
- The ability of AVs to drop-off passengers before going to park themselves or to pick-up another passenger is expected to bring a drop-off revolution to the transportation system.
- Emergence of drop-off and pick-up areas





Signage & Signalization

- Signs and signals are among the most important features of today's transportation systems. They provide drivers with all the information they need to keep the transportation system running smoothly and efficiently.
- Emergence of Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) technology will revolutionize the how information is transmitted.



Transformation of Urban Centers

- Separation between human drivers and AVs
- Enclosed environments, such as college campus, where AV-only zones are plausible
- Land use changes may also be more prominent along highways with dedicate AV-lanes, along AV-only drop-off and pick up areas, and in the areas surrounding AV-only parking facilities.

Dedicated AV lanes

 State and federal highways may present easier opportunities for dedicated lanes initially because they have simpler traffic patterns, fewer intersections, and fewer points of ingress/egress than local roadways

Dedicated AV lanes in Wisconsin????

E POPULAR HOW-TO SHOP ELECTRIC CARS THANKSGIVING TIPS GIFT GUIDE 2017

Self-Driving Cars Could Soon Have Their Own Lane on the Highway

Wisconsin is preparing for a possible pilot test.

A US freeway may get self-driving car lanes thanks to Foxconn

SUBSCRIBE FOLLOW

The I-94 highway connects to the Apple supplier's upcoming facility in the Midwest.

Proposed highway lane for self-driving cars would link Seattle and Vancouver

A venture capital firm envisions replacing HOV lanes with lanes just for autonomous vehicles

BY BARBARA ELDREDGE | @BARBARAELDREDGE | OCT 3, 2016, 12:37PM EDT

Hyper Lanes

http://www.bbc.com/news/av/technology-40382959/hyperlane-a-special-lane-forself-driving-vehicles

In Summary

THANK YOU