

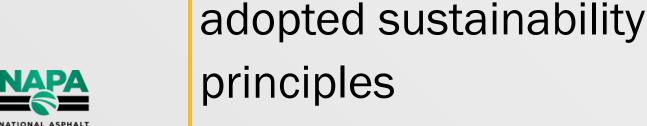
Asphalt Industry EPD Program Heather Dylla Director of Sustainable Engineering

Dec 2, 2015

Presentation Takeaways

• What is an EPD?

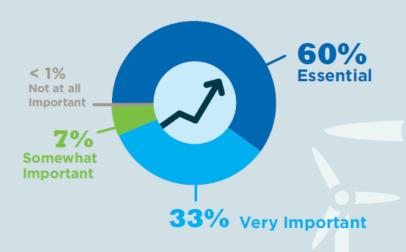
• How is an EPD created?


Industry Efforts

Growing Public Demand

81% Executive Corporate Leaders believe they need to adopt sustainability principals McGraw-Hill Construction 2012

>50% of State DOT's have


NCHRP 20-83

Future Trends

Grad students look into the future of impact issues...

93% of students say social/environmental issues are important to a business' long-term success.

Students predict the most important issues for business to get right in the next ten years:

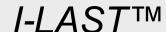
- 1. Climate & Energy [34%]
- 2. Sustainable Product Development & Marketing [23%]
- 3. Resource Conservation [17%]
- 4. Supply Chain Management [14%]
- 5. Human Rights/Fair Labor [13%]

Infrastructure Green Rating Systems

National, State, Local

envision™

- Rating Tool
 - Best practices
 - Earn Credits
 - Indicator of sustainability



New Era of Transparency

Material Credits LEED 2009

 Recycled or Reuse Materials

LEEDv.4

Environmental Product Declarations

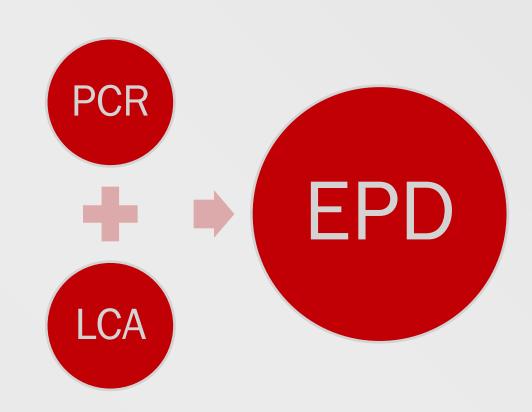
Environmental Product Declarations

EPD declares quantified environmental data for a defined product

- Fair
- Comparable
- Third Party Reviewed
- Credible

Environmental Facts Functional unit: 1 metric ton of asphalt concrete				
Primary Energy Demand [мJ]	3.9x10 ³			
Renewable [мJ]	3.9x10 ³			
Non-Renewable [мJ]	3.5x10 ²			
Global Warming Potential [kg CO ₂ -eq]	79			
Acidification Potential [kg SO ₂ -eq]	0.23			
Eutrophication Potential [kg N-eq]	0.012			
Ozone Depletion Potential [kg CFC-11-eq]	7.3x10 ⁻⁹			
Smog Potential [kg O ₃ -eq]	4.4			
Boundaries: Cradle-to-Gate Company: XYZ Asphalt RAP: 10%				

Source: PE International, Values are for illustration purposes only.

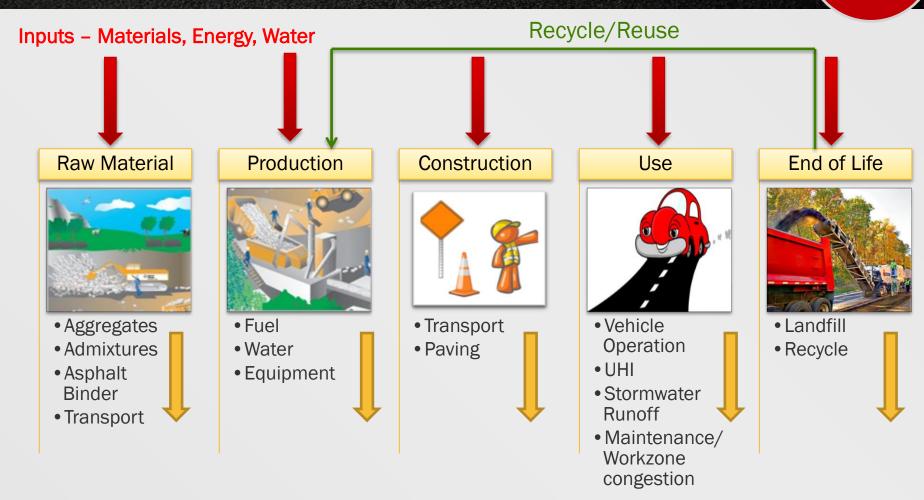


Environmental Product Declarations

Environmental Product Declarations (EPDs)

Standardized life cycle assessment (LCA) report defined by product category rules (PCRs)

- ISO 14040 LCA
- ISO 14025 EPD



Pavement Life Cycle Assessment

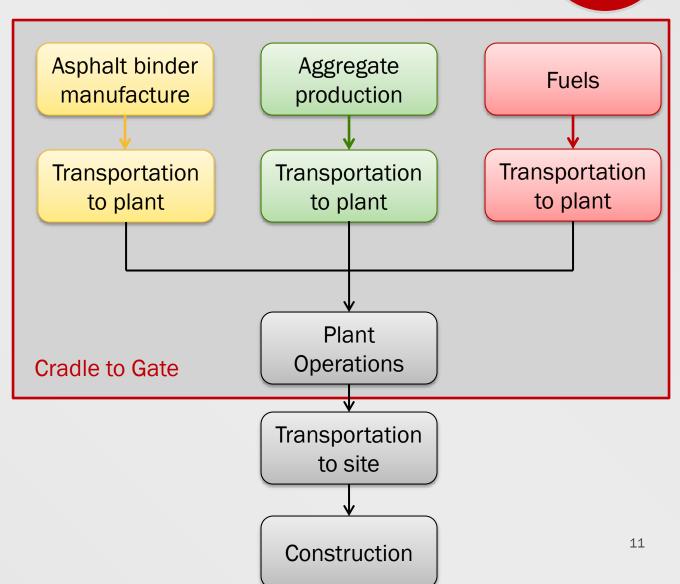
Outputs – Solid Wastes, Emissions to Air, Emissions to Water

Impact Assessment

Per ton of HMA	Asphalt	Aggregates		- Plant Oper	er. Transport	Const.	Total		
		Natural	Manuf.	Ріапі Оре	I. Hallsport	Const.	Total		
Emissions to Air (g/ton)									
SO ₂	9.4E+01			1.7E+0)0		9.5E+01		
NO _x	1.1E+02	1.3E+00		1.3E+0)1 4.4E+02	1.5E+02	7.1E+02		
CO ₂	1.5E+04	1.2E+03		1.7E+0)4		3.2E+04		
CO	7.3E+00			6.5E+0	1.9E+03	6.0E+02	2.6E+03		
HC	6.8E+01				1.5E+02	5.0E+01	2.7E+02		
Metals not specified	2.3E-01						2.3E-01		
HCI	5.7E-02						5 7F-02		
PM2.5			5.6E-03				Poter	ntial Environmental Impact	
PM10			4.7E+01	3.2E+	Global Warm	ning Poter	ntial	Acidification	Eutrophication
Total PM	1.1E+01	8.1E+01	1.6E+02	1.4E+	Fossil Fuel D	Conletion		Water Use	Criteria Air Pollutants
CH ₄				6.0E+	FUSSII I UEI L	repletion		water use	Cilletta All Futulatilis
VOC				1.6E+	Human Heal	lth- Nonca	incerous	Human Health- Cancerous	Photochemical Smog
Source: Hassan 2009					Ozone Deple	etion		Terrestrial Toxicity	Resource Depletion
					Land Use			Aquatic Toxicity	

Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI)

- Impact Assessment Tool for US
- Developed by EPA



Product Category Rules (PCR)

Product Category Rules (PCRs)

Rules a product must follow to publish an EPD

- Defines Goal and Scope
- Sets LCA boundaries
- Delineates Acceptable
 Inventory Data
- Identifies Impact
 Categories

Environmental Product Declaration

A presentation of quantified environmental life cycle product information for the **Think** work chair in North America.

Life Cycle Inventory Analysis

The Life Cycle Inventory Analysis covers entire life cycle stages as shown below.

Materials

This stage includes raw materials extraction and transformation, as well as purchased parts, until delivery to the manufacturing site in Grand Rapids.

Production

This stage comprises all production and assembly processes. Data was obtained from the management system of the production site in Grand Rapids.

Transport

Transport from suppliers to Grand Rapids and transport from Grand Rapids to major North American markets is considered.

Use

No relevant environmental exchanges occur during the use of the product.

End of life

A product can be disposed of in different ways, or become a resource itself. Based on current North American averages, it was assumed that about 99% of the products are landfilled, 0% incinerated and 1% recycled at the end of their useful life.

Distribution of the environmental impacts for the relevant life cycle stages

	Category	Unit	Total	Materials	Production	Transport	End of Life
				4		3	
-0-	Global warming	[g CO ₂ -eq.]	102 610.0	67 800.0	27 700.0	3 720.0	3 390.0
The same of the sa	Acidification	[g 50 ₂ -eq.]	836.6	535.0	266.0	35.3	0.3
	Eutrophication	[g NO ₃ -eq.]	712.2	471.0	179.0	59.2	3.0
	Photochemical smog	[g C ₂ H ₄ -eq.]	24.2	18.0	0.8	4.6	0.7

No relevant environmental exchanges occur during the use stage of the product.

How to get an EPD

- 1. Identify Program Operator
- 2. Identify or Develop a PCR Program Operator
- 3. Conduct LCA study LCA Consultant
- 4. Development of EPD LCA Consultant
- 5. Verification of EPD and LCA study Third Party Reviewers
- 6. Publish EPD Program Operator

- Initial Goal Develop Industry Average EPD
- Determine Program Operator
 - Affordability
 - Credibility
 - Facilitates Innovation
- Conduct Underlying LCA Amlan Mukherjee

Who are Program Operators?

LCA/EPD Consultants

Standard Developers

Non-Profit Associations

NAPA EPD Program

General Program Instructions for

Environmental Product Declarations (EPD) Program National Asphalt Pavement Association

Version 1 September 15, 2014

5100 Forbes Blvd. | Lanham, MD 20706 | 301-731-4748 www.AsphaltPavement.org/EPD

- Program Overseen by the Sustainability Committee
 - Created in Sept. 2014
 - International Standards
- PCR for Asphalt Mixtures for use in North America
 - PCR Guidance Development Initiative
 - Starting Point Norwegian
 PCR

PCR Development Working Group

Customers

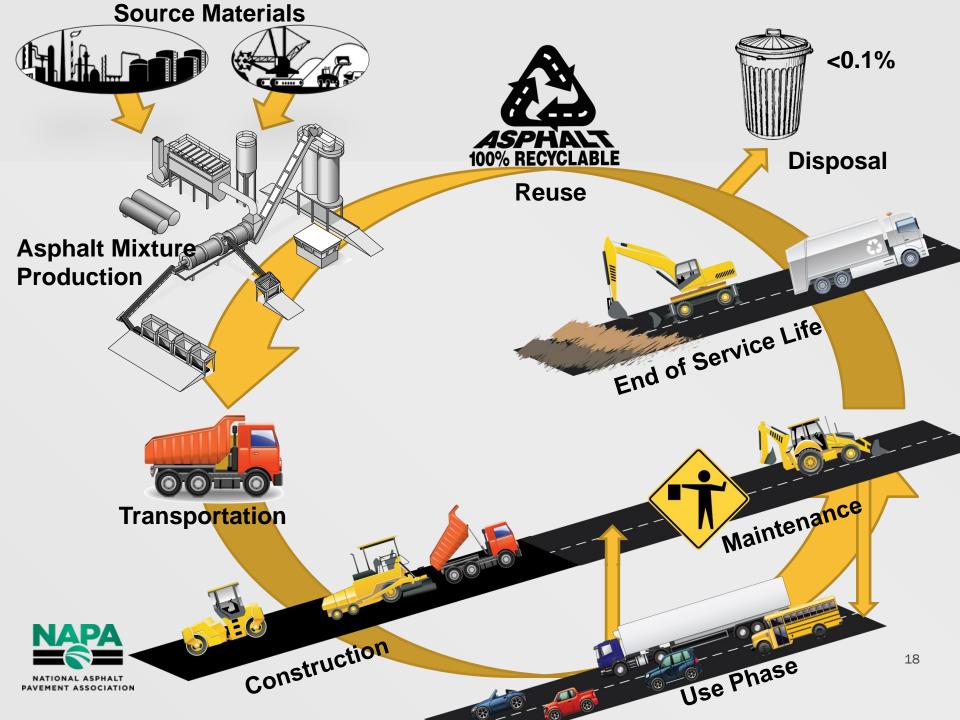
- Local
- State
- Federal

Industry

Asphalt Producers

Asphalt Binder

Suppliers


Asphalt Contractors

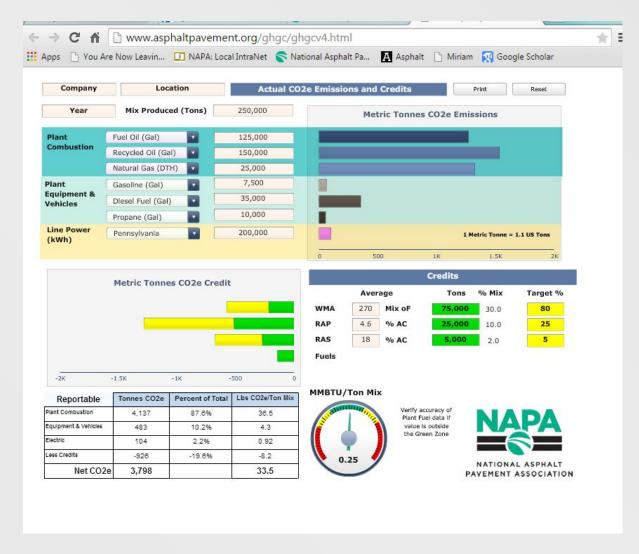
Other

Academic

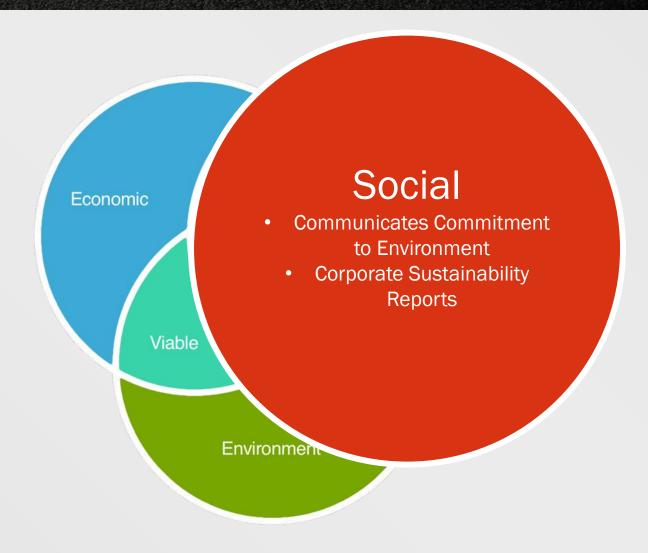
LCA Expert

Underlying LCA - Data Collection

- Led by Dr. Amlan Mukherjee
- Surveyed nearly 40 plants
- Primary Data
 - Natural gas (in cu-ft) annual
 - Electricity (kWh) annual
 - Diesel oil used in boiler and equipment (gallons) annual
 - Mix design data and percentage production
 - Transportation distances: raw materials to plant
 - Emissions: stack test in the last 5 years
 - Plant and region specific insights

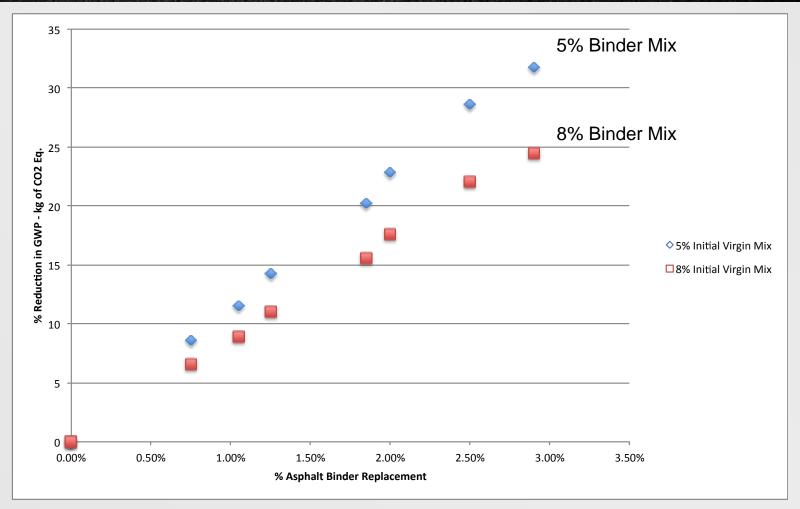


- Aid Contractors to Create EPD
- Online Tool
- Real-Time EPDs



EPDs in Practice

EPDs in Practice



EPDs in Practice

Design Curves

Project Schedule

- PCRs
 - Public Review Jan. 2016
 - Published Spring 2016
- EPD Tool
 - Beta Version Spring 2016
 - Final Version End 2016

Thank You

Heather Dylla hdylla@asphaltpavement.org

