Asphalt Modification Dr. Geoffrey M. Rowe

Presentation to the

November 29th, 2016

Todays objectives

- Give you immediate tools to assess the quality of modified binders
 - Items you should implement today
 - Items to consider for the future
- To describe to you various options for modification

• So many – we will hit on a few examples

To discuss issues that I have personally encountered in the past 40-years working with modified asphalt!

Asphalt modification

Historical

- Asphalt modification dates to 100+ years depending on definitions!
 - Oils and refinery processes early 1900's
 - Asphalt rubber 1950's
 - Many others since

Why do it?

What is asphalt

Asphalt (or bitumen)

- Residual from refinery process (or natural)
- Process has become more complex with advent of better refinery processes

Why we modify

- Address deficiency in specification compliance
- Addresses deficiency in performance
- Enable use of products that may otherwise not be suitable
- Value added to extend margins

Types of asphalt modification

Refining Process

- Examples Propane–Precipitated Asphalt (PPA), Oxidation Process, Residuum Oil Supercritical Extraction (ROSE) process, etc.
- Examples
 - Production of oxidized grades, BND grades, etc.

Material additions

 Polymers (rubbers, plastics), Waxes, Resins, Hard/Natural Asphalts, Oils (various types), Powders (Carbon Black, dusts, fillers, etc.), Anti-strip additives, extenders (Sulphur), etc.

A partial list

- Chemical modifiers
 - Organo-metallic compounds 0
 - Sulphur
 - Lignin
 - Poly-phosphoric acid
- Fibers
 - Cellulose 0
 - Alumina-magnesium silicate
 - Glass fiber 0
 - Asbestos 0
 - Polyester 0
- Adhesion improvers
- - Amines 0
 - **Phenols** 0
 - Organo-zinc
 - Organo-lead compounds
- Natural asphalts
 - **Trinidad Lake Asphalt** 0
 - Gilsonite 0
 - Rock asphalt
- Warm mix modifiers
 - Chemical amines, oils, etc.
 - Waxes 0
 - Zeolites

- Thermoplastic elastomers
 - Styrene-butadiene-styrene (SBS) 0
 - Styrene-butadiene-rubber (SBR)
 - Styrene-isoprene-styrene (SIS)
 - Styrene-ethylene-butadiene-styrene (SEBS)
 - Ethylene-propylene-diene terpolymer (EPDM)
 - Isobutene-isoprene copolymer (IIR) 0
 - Natural rubber
 - Crumb tire rubber
 - Polybutadiene (PBD)
 - Polyisoprene

- Thermoplastic polymers Organ Coron many to consider leng voletable (EVA) e will Amides Amides
 Organtasikn with view to generate buty adrylate (EVA)
 Antioxidants

 - Polyethylene (PE)
 - Polyvinyl chloride (PVC)
 - Polystyrene (PS)
 - Thermosetting polymers Þ
 - Epoxy resin
 - Polyurethane resin
 - Acrylic resin
 - Phenolic resin 0
 - **Fillers**
 - Carbon black 6
 - Coal dust 6
 - Hydrated lime
 - Lime
 - Fly ash
 - Cement

- Oils
 - Naphthenic
 - Aromatic
 - Paraffinic
 - VTAE/REOBs
- Nano modifiers
 - Various 0

Sources – Shell Bitumen Handbook and Abatech

Some resources

Recent issues

- PPA
 - <u>http://www.asphaltinstitute.org/wp-</u> content/uploads/public/engineering/pdfs/materials/IS _220_4_09.pdf
- REOB
 - <u>http://www.asphaltinstitute.org/wp-</u> content/uploads/IS235_REOB_VTAE_ASPHALTINSTITUT <u>E.pdf</u>
- Various Journals and online sources
 - Association of Asphalt Paving Technologists
 - Petersen Asphalt Conference
 - Etc.

What is an ideal binder?

For a given climate

- Low pavement temperature Adequate flexibility at low temperatures, low stiffness and good relaxation properties to resist cracking
- High pavement temperature Sufficient stiffness and elastic properties that permanent flow will not occur
- Compaction temperatures Sufficient mobility to allow compaction to occur
- Mixing temperatures Adequate flow and coating properties to obtain wetting of aggregate with binder and to ensure good coating is maintained

And a product that maintains these properties with time (low aging propensity)

How is this represented

- Typically consideration of viscosity, stiffness properties of a wide range of temperatures
 - Pre rheology example Bitumen Test Data Chart (BTDC)

Quantity of modifier

- A linear relationship does not exist!
- Some additives have an optimum amount!
- Some additives can result in poor performance if too much is added!
 - Need stability in blend!

Slide 11

Use of dynamic shear rheometer

- We can use the same test equipment as used for G*/sinδ and G*.sinδ testing – but at additional frequencies and temperatures
- This will enable us to understand the viscous and elastic response over a very wide range of conditions

Oscillatory experiments – G*, δ

Data from DSR

Shift factors used to slide data along horizontal axis to make smooth curve.

Master curve from rheology testing

Slide 15

Characterization

- Linear and nonlinear effects
 - Linear parameters from MC
 - ω_c, R, C1, C2, T_d, etc.
 - From parameters can calculated various other parameters, G*.sinδ, S(t), m(t), ΔT_c Glover-Rowe, etc. + anything new that is developed
- Non-linear torture tests such as MSCR

With today's equipment!

- Using BBR, DSR and Brookfield we can represent data on single plots as either stiffness or viscosity
 - Many data representations exist!

Typical PG grade specification representation

- PGXX-YY
 - Typically when XX + YY > 90 then modified

 Difficult for non-modified binder to have a temperature range >90°C - although several do exist

What tools do we have?

- In USA PG graded binders
 - Two specifications
 - M320 Based on high temperature $G^*/sin\delta$
 - Table 1 and Table 2
 - M322 Based on high temperature MSCR

Are these specifications adequate for understanding our modified asphalt and impact on performance? No - limited at best! Standards developed around materials in use at time of development!

The challenge

- How we define and characterize modified binders
 - SHRP program did limited work on modified binders
 - Did leave some useful tools to further understand
- Consideration of distress areas
- Consideration of aging
- What improvements should we use?
- What other improvements should we make today?
- What work do we need to do?

Highway distresses

- Two main areas considered to be related to asphalt binder
 - Rutting
 - Deformation/rutting
 - Flow
 - Cracking
 - Fatigue Cracking
 - Durability
 - Low Temperature Cracking

(Could also consider adhesion – but both mix and binder)

Improvements we should use!

- High temperature performance
 MSCR
 - MSCR captures to a reasonable degree the polymer network effect and the impact on permanent deformation
 - Requires more widespread adoption of M322 specification
 - What is MSCR?

Multi Step Creep and Recovery

Test using the DSR applying a 1 sec creep stress followed by 9 sec recovery.

MSCR test performed in DSR

Viscosity and MSCR

- If the strain at the end of a MSCR load cycle has fully recovered – then the MSCR is a measure of the viscosity at that stress level (or strain level)
 - Otherwise need to model to get the viscosity!
- Approximate viscosity
 - (×1000 to convert from kPa to Pa.s, Jnr is reported for 1 second – so reciprocal is strain/second – or viscosity)

$$\eta = \left(\frac{1}{J_{nr}}\right)$$

MSCR and Viscosity

- Example from recent testing at AI, PG76-22
- Viscosity from three types of measurements
- Example
 - Jnr = 0.9741 (1/kPa)
 - 1000/0.9741 =1026.6
 Pa.s
- Difference between viscosities associated with stress levels, test time and strength of polymer network
 Multiple effects!

Rutting performance

• We need this

Not this \rightarrow

Implement MSCR!

What other improvements should we make today?

 Very strong evidence suggests that we should specify a limit for ∆T_c for surface course asphalt mixes

- What is ΔT_c ?
- Why is this a good idea?

What is ΔT_c ?

- S(60s) and m(60s) plotted vs. temperature
 - For these we get a limiting temperature value when S=300 MPa and m=0.300

Temperature, °C

ASTM D7643

- ΔT_c— determine ΔT_c as the difference between continuous grading temperature for S(60s) from the continuous grading temperature for the m-value (at 60 seconds).
- Report ΔT_C as a negative value if the continuous grading temperature for the m(60s)-value is lower than the continuous grading temperature for S(60s).

In final ballot process!

Why ΔT_c ?

- Large differences appear to be related to durability cracking and early life issues.
- Easy to calculate since all data already captured and is part of typical grade evaluation process.

What work do we need to do?

- 4 main areas are of high importance
 - Better understand aging effects with new modification systems
 - Better understand interaction between aging and cracking
 - Better understand mixing and compaction temperature effects
 - Ensure specification development considers full range of issues

Aging

Binders – as all organic materials – age

- Oxidation changes behavior
- Need to better understand hods (RTFOT and aging and lab conditioned inter informations) effects with magnification limited informatic Space Plot 0

Linkage of cause and effects aging and cracking

Fatigue

Suffolk, England (*

Block Cracking

Understanding mixing and compaction

- Viscosity or lubricity!!!???
 - Historical work has focused on viscosity studies
 - More recent work points to lubricity
 - Several test methods have been developed example shown!
 - Different researchers have various proposal for substrates, test configurations, etc.

Ensure full understanding

- What is coming next in our understanding of modification!
 - Be aware and consider all options that relate to performance!

"...and this is where we train our employees to think out of the box."

Modification concept

- Base binder
 - Make sure soft enough to resist cracking
 - May need to soften with oils
 - For this check ΔT_c
- Then modify high end with polymer to stiffen at high temperatures
 - Use cross linking
 - PPA in limited amount

Manufacture

- What are options!
 - 1. At refinery
 - 2. At terminal
 - 3. At mix plant
- I and 2 more conventional lets look a little at #3
 - Some personal reflections!

HMA plant - PmB asphalt modification

- PmB mobile manufacturing units
 - Several designs exist
 - Generally a batch type production
 - Daily production to meet 1– day of HMA production
 - Consists of mixing unit skid mounted
 - Additional PmB storage

Adding polymer at HMA plant

Two tanks – separated by pump and high shear mill
Tanks hav

- Tanks have agitation
- After mixing material sent to tanks for overnight period

On site QC

- A mix of tests have been applied
 - European style
 - Ductility
 - Elastic recovery
 - Pen
 - Softening Point
 - Fraass
 - Training of technicians is key need! PG Graded binders
 - Full PG M320 lab implemented
 - BBR, DSR, etc. (sometime BBR not implemented)
 - Other
 - Fluorescence microscope
 - Other tests/methods

Some examples

What materials do we test

Basic test methods

Ductility test of lumpy Pmb!

Get the lab level!

Better performing roads

With care and good setup we achieve the end result!

Binder is only part of process!

- Must implement good mix design
 - Careful attention to volumetrics !!!!!!
 - Basic training needed \rightarrow
 - Understand your aggregates

- Understand mix physical tests
 - \rightarrow see thoughts on next slide
 - Binder goes part way to getting good physical properties!

.... and after all of this - don't forget the mixture!

• SATS

Bending beam fatigue 0 test

- **Tensile tests** 0
 - Use of beam, direct or indirect tension

Fracture tests 0 Texas **Overlay** Tester

Direct compact tension test

Semicircular bend test

... or the paving

... and finally --

- Don't forget the crew with the paver, rollers, etc...
 - A good binder will not substitute for good site practice

Thanks for listening ...

JAC

Questions? Comments!