Asphalt Modification
Dr. Geoffrey M. Rowe

Presentation to the

Wisconsin Asphalt Pavement Association

November 29th, 2016
Today's objectives

- Give you immediate tools to assess the quality of modified binders
 - Items you should implement today
 - Items to consider for the future
- To describe to you various options for modification
 - So many – we will hit on a few examples
- To discuss issues that I have personally encountered in the past 40–years working with modified asphalt!
Asphalt modification

- Historical
 - Asphalt modification dates to 100+ years – depending on definitions!
 - Oils and refinery processes early 1900’s
 - Asphalt rubber – 1950’s
 - Many others since

- Why do it?
What is asphalt

- Asphalt (or bitumen)
 - Residual from refinery process (or natural)
 - Process has become more complex with advent of better refinery processes

Natural Asphalt – 2009

Source – Shell Bitumen Handbook

2003 – Refinery, Beaumont, TX
Why we modify

- Address deficiency in specification compliance
- Addresses deficiency in performance
- Enable use of products that may otherwise not be suitable
- Value added to extend margins

For high performance asphalt roads
Types of asphalt modification

- Refining Process
 - Examples – Propane–Precipitated Asphalt (PPA), Oxidation Process, Residuum Oil Supercritical Extraction (ROSE) process, etc.
 - Examples
 - Production of oxidized grades, BND grades, etc.

- Material additions
 - Polymers (rubbers, plastics), Waxes, Resins, Hard/Natural Asphalts, Oils (various types), Powders (Carbon Black, dusts, fillers, etc.), Anti–strip additives, extenders (Sulphur), etc.
A partial list ...

- **Chemical modifiers**
 - Organo-metallic compounds
 - Sulphur
 - Lignin
 - Poly-phosphoric acid

- **Thermoplastic elastomers**
 - Styrene–butadiene–styrene (SBS)
 - Styrene–butadiene–rubber (SBR)
 - Styrene–isoprene–styrene (SIS)
 - Styrene–ethylene–butadiene–styrene (SEBS)
 - Ethylene–propylene–diene terpolymer (EPDM)
 - Isobutene–isoprene copolymer (IIR)
 - Natural rubber
 - Crumb tire rubber
 - Polybutadiene (PBD)
 - Polyisoprene

- **Thermoplastic polymers**
 - Ethylene vinyl acetate (EVA)
 - Ethylene methyl acrylate (EMA)
 - Ethylene hexyl acrylate (EHA)
 - Atactic polypropylene (APP)
 - Polyethylene (PE)
 - Polyvinyl chloride (PVC)
 - Polystyrene (PS)

- **Thermosetting polymers**
 - Epoxy resin
 - Polyurethane resin
 - Acrylic resin
 - Phenolic resin

- **Fillers**
 - Carbon black
 - Coal dust
 - Hydrated lime
 - Lime
 - Fly ash
 - Cement

- **Adhesion improvers**
 - Organic amines
 - Amides
 - Organosilanes

- **Antioxidants**
 - Amines
 - Phenols
 - Organo-zinc
 - Organo-lead compounds

- **Natural asphalts**
 - Trinidad Lake Asphalt
 - Gilsonite
 - Rock asphalt

- **Warm mix modifiers**
 - Chemical amines, oils, etc.
 - Waxes
 - Zeolites

- **Adhesions improvers**
 - Organocottene
 - Organosilanes

- **Nano modifiers**
 - Various

- **Sources**
 - Shell Bitumen Handbook and Abatech

Too many to consider in detail - we will talk with view to general requirements!
Some resources

- Recent issues
 - PPA
 - REOB
 - Various Journals and online sources
 - Association of Asphalt Paving Technologists
 - Petersen Asphalt Conference
 - Etc.
What is an ideal binder?

- For a given climate
 - **Low pavement temperature** – Adequate flexibility at low temperatures, low stiffness and good relaxation properties to resist cracking
 - **High pavement temperature** – Sufficient stiffness and elastic properties that permanent flow will not occur
 - **Compaction temperatures** – Sufficient mobility to allow compaction to occur
 - **Mixing temperatures** – Adequate flow and coating properties to obtain wetting of aggregate with binder and to ensure good coating is maintained

And a product that maintains these properties with time (low aging propensity)
Typically consideration of viscosity, stiffness properties of a wide range of temperatures

- Pre rheology – example Bitumen Test Data Chart (BTDC)

- Higher PEN: Better low temperature properties
- Lower Fraass: Better low temperature properties
- Lower PEN: Better high temperature properties
- Higher SP: Better high temperature properties
Quantity of modifier

- A linear relationship does not exist!
- Some additives have an optimum amount!
- Some additives can result in poor performance if too much is added!
 - Need stability in blend!
Use of dynamic shear rheometer

- We can use the same test equipment as used for $G^*/\sin \delta$ and $G^*.\sin \delta$ testing – but at additional frequencies and temperatures
- This will enable us to understand the viscous and elastic response over a very wide range of conditions
Oscillatory experiments – G^*, δ

$$\sin \delta = \frac{\text{Viscous Part} \ (G'')}{G^*} \quad \text{cos} \ \delta = \frac{\text{Elastic Part} \ (G')}{G^*}$$
Data from DSR

- Shift factors used to slide data along horizontal axis to make smooth curve.
Master curve from rheology testing

Wax Binder (4) 0 days

This part of the master curve tells us about low speed and/or high temperature behavior – but also need other tests.

Computed Discrete Spectrum
- g_i, $1/\lambda_i$
- Complex Modulus
- Phase Angle
- Fitted Complex Modulus
- Fitted Phase Angle

Legend

Sample ID: b4-0-DSR BBR
Dynamic Mastercurve Tref = 25°C

This part of the master curve tells us about low temperature and cracking performance.

4 Licomont BS 100
Master curve – poor shifting

With certain modifiers the lower stiffness part of the master curve is often not obtained reliability. This part of the master curve is nearly always obtained.
Characterization

- Linear and non-linear effects
 - Linear – parameters from MC
 - ω_c, R, $C1$, $C2$, T_d, etc.
 - From parameters can calculated various other parameters, $G^*.\sin\delta$, $S(t)$, $m(t)$, ΔT_c
 - Glover–Rowe, etc. + anything new that is developed
 - Non-linear – torture tests such as MSCR

- Graph showing G^*, P_a, R-value, ω_c, ω, δ, degrees
With today’s equipment!

- Using BBR, DSR and Brookfield – we can represent data on single plots as either stiffness or viscosity
 - Many data representations exist!

![Graphs showing relaxation moduli and steady state viscosities vs temperature, with data points and trendlines for Brookfield, DSR, and Jnr numbers.

Jnr number are not rigorous – just approximate on this plot.
Typical PG grade specification representation

- PGXX–YY
 - Typically - when XX + YY > 90 then modified

 - Difficult for non-modified binder to have a temperature range >90°C - although several do exist
What tools do we have?

- In USA – PG graded binders
 - Two specifications
 - M320 – Based on high temperature $G^*/\sin\delta$
 - Table 1 and Table 2
 - M322 – Based on high temperature MSCR

- Are these specifications adequate for understanding our modified asphalt and impact on performance? **No – limited at best!**

Standards developed around materials in use at time of development!
The challenge

- How we define and characterize modified binders
 - SHRP program – did limited work on modified binders
 - Did leave some useful tools to further understand

- Consideration of distress areas
- Consideration of aging

- What improvements should we use?
- What other improvements should we make today?
- What work do we need to do?
Highway distresses

- Two main areas considered to be related to asphalt binder
 - Rutting
 - Deformation/rutting
 - Flow
 - Cracking
 - Fatigue Cracking
 - Durability
 - Low Temperature Cracking

(Could also consider adhesion – but both mix and binder)
Improvements we should use!

- High temperature performance
 - MSCR
 - MSCR captures to a reasonable degree the polymer network effect and the impact on permanent deformation
 - Requires more widespread adoption of M322 specification
 - What is MSCR?
Test using the DSR applying a 1 sec creep stress followed by 9 sec recovery.
MSCR test performed in DSR

- **Applied Stress (A to B)**
- **Fixed Plate**
- **Asphalt**
- **Load applied to upper plate**
- **Recovery (B to C)**

Symbols and Equations:*

- $\tau = \text{stress applied during tests}$
- $\gamma_p = \text{peak strain}$
- $\gamma_r = \text{recovered strain}$
- $\gamma_u = \text{un-recovered strain}$

Formulas:

- $J_{nr} = \frac{\gamma_u}{\tau}$
- \[\text{% recovery} = \frac{100 \times \gamma_r}{\gamma_p} \]

Additional Text:

- Higher Strains in MSCR!!
Viscosity and MSCR

- If the strain at the end of a MSCR load cycle has fully recovered – then the MSCR is a measure of the viscosity at that stress level (or strain level)
 - Otherwise need to model to get the viscosity!

- Approximate viscosity
 - ($\times 1000$ to convert from kPa to Pa.s, Jnr is reported for 1 second – so reciprocal is strain/second – or viscosity)

$$\eta = \left(\frac{1}{J_{nr}} \right)$$
Example from recent testing at AI, PG76–22

Viscosity from three types of measurements

Example
 ◦ \(\text{Jnr} = 0.9741 \ (1/\text{kPa}) \)
 ◦ \(1000/0.9741 = 1026.6 \ \text{Pa.s} \)

Difference between viscosities associated with stress levels, test time and strength of polymer network
 ◦ Multiple effects!
Rutting performance

- We need this

- Not this ➔

Implement MSCR!
Very strong evidence suggests that we should specify a limit for ΔT_c for surface course asphalt mixes.

- What is ΔT_c?
- Why is this a good idea?
What is ΔT_c?

- $S(60s)$ and $m(60s)$ plotted vs. temperature
 - For these we get a limiting temperature value when $S=300$ MPa and $m=0.300$

GSE data from AAPT paper by Anderson et al.
ΔT\text{C} — determine ΔT\text{C} as the difference between continuous grading temperature for S(60s) from the continuous grading temperature for the m-value (at 60 seconds).

Report ΔT\text{C} as a negative value if the continuous grading temperature for the m(60s)-value is lower than the continuous grading temperature for S(60s).

In final ballot process!
Why ΔT_c?

- Large differences appear to be related to durability cracking and early life issues.
- Easy to calculate since all data already captured and is part of typical grade evaluation process.

Note – some move to extended aging – 40hrs
What work do we need to do?

- 4 main areas are of high importance
 - Better understand aging effects with new modification systems
 - Better understand interaction between aging and cracking
 - Better understand mixing and compaction temperature effects
 - Ensure specification development considers full range of issues
Aging

- Binders – as all organic materials – age
 - Oxidation changes behavior
 - Need to better understand aging and lab conditioning effects with modification

Our aging methods (RTFOT and PAV) provide limited information!
Linkage of cause and effects – aging and cracking

Which are best parameters – ΔT_c, $G-R$, $G^*.\sin\delta$, LAST, etc.?
Understanding mixing and compaction

- Viscosity or lubricity!!!???
 - Historical work has focused on viscosity studies
 - More recent work points to lubricity
 - Several test methods have been developed – example shown!
 - Different researchers have various proposal for substrates, test configurations, etc.

![Graph showing viscosity and normal force](image-url)
Ensure full understanding

- What is coming next in our understanding of modification!
 - Be aware and consider all options that relate to performance!
Modification concept

- Base binder
 - Make sure soft enough to resist cracking
 - May need to soften with oils
 - For this check ΔT_c
- Then modify high end with polymer to stiffen at high temperatures
 - Use cross linking
 - PPA in limited amount
What are options!

1. At refinery
2. At terminal
3. At mix plant

1 and 2 – more conventional – lets look a little at #3

Some personal reflections!
PmB – mobile manufacturing units
- Several designs exist
- Generally a batch type production
- Daily production to meet 1-day of HMA production
- Consists of mixing unit – skid mounted
- Additional PmB storage
Adding polymer at HMA plant

- Two tanks – separated by pump and high shear mill
- Tanks have agitation
- After mixing – material sent to tanks for overnight period
On site QC

- A mix of tests have been applied
 - European style
 - Ductility
 - Elastic recovery
 - Pen
 - Softening Point
 - Fraass
 - PG Graded binders
 - Full PG M320 lab implemented
 - BBR, DSR, etc. (sometime BBR not implemented)
 - Other
 - Fluorescence microscope
 - Other tests/methods

Training of technicians is key need!
Some examples

- What materials do we test
- Basic test methods
- DSR, etc.
Better performing roads

- With care and good setup we achieve the end result!
Must implement good mix design
 ◦ Careful attention to volumetrics !!!!!!
 ◦ Basic training needed →
 ◦ Understand your aggregates

Understand mix physical tests
 → see thoughts on next slide
 ◦ Binder goes part way to getting good physical properties!
…. and after all of this – don’t forget the mixture!

- Hamburg
- SATS

- Bending beam fatigue test

- Fracture tests
 - Texas Overlay Tester

- Tensile tests
 - Use of beam, direct or indirect tension

- Direct compact tension test

- Semi-circular bend test
... or the paving

End of truck load segregation
... and finally --

- Don’t forget the crew with the paver, rollers, etc…
 - A good binder – will not substitute for good site practice
Thanks for listening ...